Site MapHelpFeedbackLearning Objectives
Learning Objectives
(See related pages)

Chapter 5 Learning Objectives

*Note: Type-setting limitations do not allow for arrows on the vector labels, so we have used boldface only.

Concepts and Skills to Review

  • Gravitational forces (Section 2.5 )
  • Newton's second law: force and acceleration (Section 3.4 )
  • Velocity and acceleration (Section 4.4 )

Summary

  • The angular displacement Δθ is the angle through which an object has turned. Positive and negative angular displacements indicate rotation in different directions. Conventionally, positive represents counterclockwise motion.
  • Average angular velocity:
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_2.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a> (5-2)
  • Average angular acceleration:
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_15.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a> (5-15)
  • The instantaneous angular velocity and acceleration are the limits of the average quantities as <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_a.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a>
  • A useful measure of angle is the radian:
     2π radians = 360° 
    Using radian measure for θ, the arc length s of a circle of radius r subtended by an angle θ is:
     s = θr (θ in radian measure)(5-5)
  • Using radian measure for ω, the speed of an object in circular motion (including a point on a rotating object) is
     v = rω (ω in radians per unit time)(5-6)
  • Using radian measure for α, the tangential acceleration component is related to the angular acceleration as follows:
     at= rα (α in radians per time2)(5-17)
  • An object moving in a circle has a centripetal acceleration component given by
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_11.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a> (5-11)
    The tangential and centripetal accelerations are two perpendicular components of the acceleration. The centripetal acceleration component changes the direction of the velocity and the tangential acceleration component changes the speed.
  • Uniform circular motion means that v and ω are constant. In uniform circular motion, the time to complete one revolution is constant and is called the period T. The frequency f is the number of revolutions completed per second.
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_7.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> (5-7)
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_8.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a> (5-8)
     <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_9.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a> (5-9)
    where the SI unit of angular velocity is rad/s and that of frequency is rev/s = Hz.
  • A rolling object is both rotating and translating. If the object rolls without skidding or slipping, then
     vaxle = rω 
  • Kepler's third law says that the square of the period of a planetary orbit is proportional to the cube of the orbital radius:
     T2 = constant × r3(5-14)
  • In the case of constant angular acceleration, we can solve rotational kinematics problems using relationships analogous to those we developed for linear motion:
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0070524076/57988/image5_18_22.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>
  • When an object is accelerating, its apparent weight differs from its true weight:
     W´ = m|g - a|(3-17)
    where g is the local gravitational field. The apparent gravitational field is
     g´ = g a(5-23)







College Physics 1eOnline Learning Center with Powerweb

Home > Chapter 5 > Learning Objectives