Chapter 2 Descriptive Statistics

	,
The sample mean, \bar{x}	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$
The sample variance, s^2	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n-1}$
The sample standard deviation, <i>s</i>	$s = \sqrt{s^2}$
Computational formula for s^2	$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \right]$
z score	$z = \frac{x - \text{mean}}{\text{standard deviation}}$
The coefficient of variation	coefficient of variation = $\frac{\text{standard deviation}}{\text{mean}} \times 100$
The weighted mean	$\frac{\sum w_i x_i}{\sum w_i}$
Sample mean for grouped data	$\overline{x} = \frac{\sum f_i M_i}{\sum f_i} = \frac{\sum f_i M_i}{n}$
Sample variance for grouped data	$s^2 = \frac{\sum f_i \left(M_i - \overline{x} \right)^2}{n - 1}$
Population mean for grouped data	$\mu = \frac{\sum f_i M_i}{N}$
Population variance for grouped data	$s^{2} = \frac{\sum f_{i} (M_{i} - \overline{x})^{2}}{n - 1}$ $\mu = \frac{\sum f_{i} M_{i}}{N}$ $\sigma^{2} = \frac{\sum f_{i} (M_{i} - \mu)^{2}}{N}$

Chapter 3 Probability

Probabilities when	the number of sample space outcomes that correspond to the event
all sample space	the total number of sample space outcomes
outcomes are	1 1
equally likely	
The rule of	$P(\overline{A}) = 1 - P(A)$
complements	
The addition rule	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
for two events	

$P(A \cup B) = P(A) + P(B)$
$P(A_1 \cup A_2 \cup \cdots \cup A_N) = P(A_1) + P(A_2) + \cdots + P(A_N)$
$P(A \cap B)$
$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
$P(A \cap B)$
$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$P(A \cap B) = P(A)P(B A)$
=P(B)P(A B)
$P(A \mid B) = P(A)$
$P(B \mid A) = P(B)$
$P(A \cap B) = P(A)P(B)$
$P(A_1 \cap A_2 \cap \cdots \cap A_N) = P(A_1)P(A_2)\cdots P(A_N)$
$P(S_i \cap E) P(S_i) P(E S_i)$
$P(S_i E) = \frac{P(S_i \cap E)}{P(E)} = \frac{P(S_i)P(E S_i)}{P(E)}$

Chapter 4 Discrete Random Variables

Mean (expected value) of a discrete random variable	$\mu_{x} = \sum_{\text{All } x} x p\left(x\right)$
Variance and standard deviation of a discrete random variable	$\sigma_x^2 = \sum_{\text{All } x} (x - \mu_x)^2 \ p(x)$ $\sigma_x = \sqrt{\sigma_x^2}$
Binomial probability formula	$p(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$
Mean, variance, and standard deviation of a binomial random variable	$\mu_x = np$, $\sigma_x^2 = npq$, and $\sigma_x = \sqrt{npq}$
Poisson probability formula	$P(x) = \frac{e^{-\mu}\mu^x}{x!}$
Mean, variance, and standard deviation of a Poisson random variable	$\mu_x = \mu, \sigma_x^2 = \mu, \sigma_x = \sqrt{\mu}$

Hypergeometric probability formula	$p(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$
Mean and variance of a hypergeometric random variable	$\mu = n \left(\frac{r}{N}\right)$ and $\sigma^2 = n \left(\frac{r}{N}\right) \left(\frac{N-r}{N}\right) \left(\frac{N-n}{N-1}\right)$

Chapter 5 Continuous Random Variables

The uniform probability curve	$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$
Mean and standard deviation of a uniform distribution	$\mu_x = \frac{a+b}{2}$ and $\sigma_x = \frac{b-a}{\sqrt{12}}$
The normal probability curve	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
z values	$z = \frac{x - \mu}{\sigma}$
The exponential probability curve	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{otherwise} \end{cases}$
Mean and standard deviation of an exponential distribution	$\mu_x = \frac{1}{\lambda}$ and $\sigma_x = \frac{1}{\lambda}$

Chapter 7 Confidence Intervals

A z-based confidence interval for a population mean μ with σ known	$\left[\overline{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \right] = \left[\overline{x} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right), \overline{x} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \right]$
A <i>t</i> -based confidence interval for a population mean μ with σ unknown	$\left[\overline{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right)\right]$
Sample size when estimating μ	$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$
A large-sample confidence interval for a population proportion <i>p</i>	$\left[\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$
Sample size when estimating <i>p</i>	$n = p(1-p)\left(\frac{z_{\alpha/2}}{E}\right)^2$
<i>z</i> -based confidence interval for $\mu_1 - \mu_2$	$\left[\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right]$

<i>t</i> -based confidence interval for $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$	$\left[\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{s_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}\right]$
<i>t</i> -based confidence intervals for $\mu_1 - \mu_2$	$\left[\overline{x}_{1} - \overline{x}_{2} \pm t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \right]$
Confidence interval for μ_d	$\left[\bar{d} \pm t_{\alpha/2} \left(\frac{s_d}{\sqrt{n}} \right) \right]$
Large-sample confidence interval for $p_1 - p_2$	$\left[\hat{p}_{1} - \hat{p}_{2} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}\right]$

Chapter 9 Statistical Inferences Based on Two Samples

z test about $\mu_1 - \mu_2$	$z = \frac{\overline{x}_1 - \overline{x}_2 - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
t test about $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$	$t = \frac{\overline{x}_1 - \overline{x}_2 - d_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$
t test about $\mu_1 - \mu_2$ when $\sigma_1^2 \neq \sigma_2^2$	$t = \frac{\overline{x}_1 - \overline{x}_2 - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

Chapter 10 Experimental Design and Analysis of Variance

One-way ANOVA sums of squares: between-groups sum of squares	$SSB = \sum_{i=1}^{p} n_i \left(\overline{x}_i - \overline{x} \right)^2$
One-way ANOVA sums of squares: error sum of squares	$SSE = \sum_{j=1}^{n_1} (x_{1j} - \overline{x}_1)^2 + \sum_{j=1}^{n_2} (x_{2j} - \overline{x}_2)^2 + \dots + \sum_{j=1}^{n_p} (x_{pj} - \overline{x}_p)^2$
One-way ANOVA sums of squares: total sum of squares	SST = SSB + SSE
One-way ANOVA F test	$F = \frac{MSB}{MSE} = \frac{SSB/(p-1)}{SSE/(n-p)}$
Randomized block sums of squares	$SST = SSB + SSBL + SSE, \text{ where}$ $SSB = b \sum_{i=1}^{p} (\overline{x}_{i} - \overline{x})^{2}$

	$SSBL = p \sum_{j=1}^{b} \left(\overline{x}_{\bullet j} - \overline{x} \right)^{2}$
	$SST = \sum_{i=1}^{p} \sum_{j=1}^{p} \left(x_{ij} - \overline{x} \right)^{2}$ SSE = SST - SSB - SSBL
Two-way ANOVA sums of squares	$SST = SS(1) + SS(2) + SS(int) + SSE, \text{ where}$ $SST = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{m} (x_{ij,k} - \overline{x})^{2}$
	$SS(1) = bm \sum_{i=1}^{a} (\overline{x}_{i} - \overline{x})^{2}$ $SS(2) = am \sum_{i=1}^{b} (\overline{x}_{i} - \overline{x})^{2}$
	$SS (int) = m \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{x}_{ij} - \overline{x}_{i \cdot} - \overline{x}_{\cdot j} + \overline{x})^{2}$ $SSE = SST - SS(1) - SS(2) - SS(int)$

Chapter 11 Correlation Coefficient and Simple Linear Regression Analysis

Simple correlation coefficient	$r = \frac{S_{xy}}{S_x S_y}$
Testing the significance of the population correlation coefficient	$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$
Simple linear regression model	$y = \mu_{y x} + \varepsilon = \beta_0 + \beta_1 x + \varepsilon$
Mean square error	$s^2 = \frac{SSE}{n-2}$
Standard error	$s = \sqrt{\frac{SSE}{n-2}}$
Least squares line (prediction equation)	$\hat{y} = b_0 + b_1 x$
Sum of squared residuals	$SSE = SS_{yy} - \frac{SS_{xy}^2}{SS_{xx}}$
The residual	$e = y - \hat{y}$
Standard error of the estimate b_1	$\frac{b_1 - \beta_1}{s_{b_1}}$
Testing the significance of the slope	$t = \frac{b_1}{s_{b_1}}$

Confidence interval for the slope	$\left[b_1 + t_{\alpha/2} s_{b_1}\right]$
Testing the significance of the <i>y</i> intercept	$t = \frac{b_0}{s_{b_0}}$, where $S_{b_0} = S\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SS_{xx}}}$
Distance value	Distance value = $\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{SS_{xx}}$
Standard error of \hat{y}	$s_{\hat{y}} = s\sqrt{\text{distance value}}$
Confidence interval for a mean value of <i>y</i>	$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{\text{distance value}}\right]$
Prediction interval for an individual value of <i>y</i>	$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \text{distance value}}\right]$
Unexplained variation	Unexplained variation = $\Sigma (y_i - \hat{y}_i)^2$
Explained variation	Explained variation = $\Sigma (\hat{y}_i - \overline{y})^2$
_	$=(y_i,y_i)$
Total variation	Total variation = $\Sigma (y_i - \overline{y})^2$
Total variation Simple coefficient of determination	,
Simple coefficient of	Total variation = $\Sigma (y_i - \overline{y})^2$ $r^2 = \frac{\text{explained variation}}{r^2}$

Chapter 12 Multiple Regression

The multiple regression model	$y = \mu_{y x_1, x_2, \dots, x_k} + \varepsilon$
	$= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$
Point prediction of an individual value of <i>y</i>	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$
Mean square error	$s^2 = \frac{SSE}{n - (k+1)}$
Standard error	$s = \sqrt{\frac{SSE}{n - (k + 1)}}$
	$\sqrt{n-(k+1)}$
The least squares point estimates	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$
Point estimate of a mean value of y	$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$
Total variation	Total variation = $\Sigma (y_i - \overline{y})^2$

Explained variation	Explained variation = $\Sigma (\hat{y}_i - \overline{y})^2$
Unexplained variation	Unexplained variation = $\Sigma (y_i - \hat{y}_i)^2$
Multiple coefficient of determination	$R^2 = \frac{\text{explained variation}}{\text{total variation}}$
Multiple correlation coefficient	Multiple correlation coefficient = $R = \sqrt{R^2}$
Adjusted multiple coefficient of determination	$\overline{R}^2 = \left(R^2 - \frac{k}{n-1}\right) \left(\frac{n-1}{n-(k+1)}\right)$
An <i>F</i> test for the linear regression model	$F \text{ (model)} = \frac{\text{explained variation } / k}{\text{unexplained variation } / \left[n - (k+1) \right]}$
Testing the significance of an independent variable	$t = \frac{b_j}{s_{b_j}}$
Confidence interval for β_j	$\left[b_{j}\pm t_{\alpha/2}s_{b_{j}}\right]$
Confidence interval for a mean value of <i>y</i>	$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{\text{distance value}}\right]$
Prediction interval for an individual value of <i>y</i>	$\left[\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \text{distance value}}\right]$
The quadratic regression model	$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
The partial <i>F</i> test	$F = \frac{\left(SSE_R - SSE_C\right)/\left(k - g\right)}{SSE_C/\left[n - (k+1)\right]}$

Chapter 13 Nonparametric Methods

Large-sample sign test	$z = \frac{S - 0.5 - 0.5n}{0.5\sqrt{n}}$
Kruskal–Wallis <i>H</i> statistic	$H = \frac{12}{n(n+1)} \sum_{i=1}^{p} \frac{T_i^2}{n_i} - 3(n+1)$
Spearman's rank correlation coefficient	$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{\left(\sum x\right)^2}{n_1}\right)\left(\sum y^2 - \frac{\left(\sum y^2\right)}{n_2}\right)}}$

Chapter 14 Chi-Square Tests

A goodness of fit test for multinomial probabilities	$\chi^2 = \sum_{i=1}^k \frac{\left(f_i - E_i\right)^2}{E_i}$
--	--

A goodness of fit test for a normal distribution	$\chi^2 = \sum_{i=1}^k \frac{\left(f_i - E_i\right)^2}{E_i}$
A chi-square test for independence	$\chi^2 = \sum_{ ext{all cells}} rac{\left(f_{ij} - \hat{E}_{ij} ight)^2}{\hat{E}_{ij}}$

Chapter 15 Decision Theory

Expected value	EVPI = expected payoff under certainty – expected payoff under risk
of perfect	
information	
Expected value	EVSI = EPS - EPNS
of sample	
information	
Expected net	ENGS = EVSI – cost of sampling
gain of sampling	

Chapter 16 Time Series Forecasting

No trend	$y_t = \beta_0 + \varepsilon_t$
Linear trend	$y_t = \beta_0 + \beta_1 t + \varepsilon_t$
Quadratic trend	$\beta_0 + \beta_1 t + \beta_2 t^2$
Simple exponential smoothing	$S_{T} = \alpha y_{T} + (1 - \alpha) S_{T-1}$ $y_{t} = \beta_{0} + \beta_{1} t + \varepsilon_{t}$
Double exponential smoothing	$y_t = \beta_0 + \beta_1 t + \varepsilon_t$
Mean absolute deviation (MAD)	$MAD = \frac{\sum abs(y_t - \hat{y}_t)}{t}$
Mean squared deviation (MSD)	$MAD = \frac{\sum abs(y_t - \hat{y}_t)}{t}$ $MSD = \frac{\sum (y_t - \hat{y}_t)^2}{t}$
Simple index	$\frac{y_t}{y_0} \times 100$
Aggregate price index	$\left(\frac{\sum p_t}{\sum p_0}\right) \times 100$
Laspeyres index	$\frac{\sum p_i q_0}{\sum p_0 q_0} \times 100$
Paasche index	$\frac{\sum p_t q_t}{\sum p_0 q_t} \times 100$

Chapter 17 Process Improvement Using Control Charts

Centre line and control limits for an \bar{x}	Centre line $_{\bar{x}} = \overline{\overline{x}}$,
chart	$UCL_{\bar{x}} = \overline{\bar{x}} + A_2 \overline{R},$
	$LCL_{\overline{x}} = \overline{\overline{x}} - A_2 \overline{R},$
Centre line and control limits for an <i>R</i> chart	Centre line _{R} = \overline{R} ,
	$UCL_R = D_4 \overline{R},$
	$LCL_R = D_3\overline{R},$
Natural tolerance limits for normally distributed process measurements	$ \left[\overline{\overline{x}} \pm 3 \left(\frac{\overline{R}}{d_2} \right) \right] = \left[\overline{\overline{x}} - 3 \left(\frac{\overline{R}}{d_2} \right), \overline{\overline{x}} + 3 \left(\frac{\overline{R}}{d_2} \right) \right] $
Centre line and control limits for a <i>p</i> chart	Centre line = \overline{p} ,
	$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}},$
	$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$