
13
Further Topics in
Optimization

This chapter deals with two major topics. The first is nonlinear programming, which
extends the techniques of constrained optimization of Chap. 12 by allowing inequality con-
straints into the problem. In Chap. 12, the constraints must be satisfied as strict equalities;
i.e., the constraints are always binding. Now we shall consider constraints that may not be
binding in the solution; i.e., they may be satisfied as inequalities in the solution.

In the second part of this chapter, we revert back to the realm of classical-constrained
optimization to discuss some topics left untouched in the previous chapters. These include
the indirect objective function, the envelope theorem, and the concept of duality.

13.1 Nonlinear Programming and Kuhn-Tucker Conditions
In the history of methodological development, the first attempts at dealing with inequality
constraints were concentrated on linear ones only. With linearity prevailing in the con-
straints as well as in the objective function, the resulting methodology is quite naturally
christened linear programming. Despite the limitation of linearity, however, we could for
the first time, explicitly specify the choice variables to be nonnegative, as is appropriate in
most economic analysis. This represents a significant advance. Nonlinear programming, a
later development, makes it possible even to handle nonlinear inequality constraints and
nonlinear objective function. Thus it occupies a most important place in optimization
methodology.

In the classical optimization problem, with no explicit restrictions on the signs of the
choice variables, and with no inequalities in the constraints, the first-order condition for
a relative or local extremum is simply that the first partial derivatives of the (smooth)
Lagrangian function with respect to all the choice variables and the Lagrange multipliers
be zero. In nonlinear programming, there exists a similar type of first-order condition,
known as the Kuhn-Tucker conditions.† As we shall see, however, while the classical first-
order condition is always necessary, the Kuhn-Tucker conditions cannot be accorded the
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status of necessary conditions unless a certain proviso is satisfied. On the other hand, under
certain specific circumstances, the Kuhn-Tucker conditions turn out to be sufficient condi-
tions, or even necessary-and-sufficient conditions as well.

Since the Kuhn-Tucker conditions are the single most important analytical result in non-
linear programming, it is essential to have a proper understanding of those conditions as
well as their implications. For the sake of expository convenience, we shall develop these
conditions in two steps.

Step 1: Effect of Nonnegativity Restrictions
As the first step, consider a problem with nonnegativity restrictions on the choice variables,
but with no other constraints. Taking the single-variable case, in particular, we have

Maximize π = f (x1)

subject to x1 ≥ 0
(13.1)

where the function f is assumed to be differentiable. In view of the restriction x1 ≥ 0, three
possible situations may arise. First, if a local maximum of π occurs in the interior of the
shaded feasible region in Fig. 13.1, such as point A in Fig. 13.1a, then we have an interior
solution. The first-order condition in this case is dπ/dx1 = f ′(x1) = 0, same as in the clas-
sical problem. Second, as illustrated by point B in Fig. 13.1b, a local maximum can also
occur on the vertical axis, where x1 = 0. Even in this second case, where we have a bound-
ary solution, the first-order condition f ′(x1) = 0 nevertheless remains valid. However, as a
third possibility, a local maximum may in the present context take the position of point C
or point D in Fig. 13.1c, because to qualify as a local maximum in problem (13.1), the can-
didate point merely has to be higher than the neighboring points within the feasible region.
In view of this last possibility, the maximum point in a problem like (13.1) can be charac-
terized, not only by the equation f ′(x1) = 0, but also by the inequality f ′(x1) < 0. Note on
the other hand, that the opposite inequality f ′(x1) > 0 can safely be ruled out, for at a point
where the curve is upward-sloping, we can never have a maximum, even if that point is
located on the vertical axis, such as point E in Fig. 13.1a.

The upshot of the preceding discussion is that, in order for a value of x1 to give a local
maximum of π in problem (13.1), it must satisfy one of the following three conditions

f ′(x1) = 0 and x1 > 0 [point A] (13.2)
f ′(x1) = 0 and x1 = 0 [point B] (13.3)
f ′(x1) < 0 and x1 = 0 [points C and D] (13.4)
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Actually, these three conditions can be consolidated into a single statement

f ′(x1) ≤ 0 x1 ≥ 0 and x1 f ′(x1) = 0 (13.5)

The first inequality in (13.5) is a summary of the information regarding f ′(x1) enumer-
ated in (13.2) through (13.4). The second inequality is a similar summary for x1; in fact,
it merely reiterates the nonnegativity restriction of the problem. And, as for the third part
of (13.5), we have an equation which expresses an important feature common to (13.2)
through (13.4), namely, that of the two quantities x1 and f ′(x1), at least one must take a zero
value, so that the product of the two must be zero. This feature is referred to as the compli-
mentary slackness between x1 and f ′(x1). Taken together, the three parts of (13.5) constitute
the first-order necessary condition for a local maximum in a problem where the choice vari-
able must be nonnegative. But going a step further, we can also take them to be necessary for
a global maximum. This is because a global maximum must also be a local maximum and,
as such, must also satisfy the necessary condition for a local maximum.

When the problem contains n choice variables:

Maximize π = f (x1, x2, . . . , xn)

subject to xj ≥ 0 ( j = 1, 2, . . . , n)
(13.6)

The classical first-order condition f1 = f2 = · · · = fn = 0 must be similarly modified. To
do this, we can apply the same type of reasoning underlying (13.5) to each choice variable
xj taken by itself. Graphically, this amounts to viewing the horizontal axis in Fig. 13.1 as
representing each xj in turn. The required modification of the first-order condition then
readily suggests itself:

f j ≤ 0 xj ≥ 0 and xj f j = 0 ( j = 1, 2, . . . , n) (13.7)

where f j is the partial derivative ∂π/∂xj .

Step 2: Effect of Inequality Constraints
With this background, we now proceed to the second step, and try to include inequality
constraints as well. For simplicity, let us first deal with a problem with three choice vari-
ables (n = 3) and two constraints (m = 2):

Maximize π = f (x1, x2, x3)

subject to g1(x1, x2, x3) ≤ r1

g2(x1, x2, x3) ≤ r2

(13.8)

and x1, x2, x3 ≥ 0

which, with the help of two dummy variables s1 and s2, can be transformed into the equiv-
alent form

Maximize π = f (x1, x2, x3)

subject to g1(x1, x2, x3) + s1 = r1

g2(x1, x2, x3) + s2 = r2

(13.8’)

and x1, x2, x3, s1, s2 ≥ 0
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If the nonnegativity restrictions are absent, we may, in line with the classical approach,
form the Lagrangian function:

Z ′ = f (x1, x2, x3) + λ1[r1 − g1(x1, x2, x3) − s1]

+ λ2[r2 − g2(x1, x2, x3) − s2] (13.9)

and write the first-order condition as

∂ Z ′

∂x1
= ∂ Z ′

∂x2
= ∂ Z ′

∂x3
= ∂ Z ′

∂s1
= ∂ Z ′

∂s2
= ∂ Z ′

∂λ1
= ∂ Z ′

∂λ2
= 0

But since the xj and si variables do have to be nonnegative, the first-order condition on
those variables should be modified in accordance with (13.7). Consequently, we obtain the
following set of conditions instead:

∂ Z ′

∂xj
≤ 0 xj ≥ 0 and xj

∂ Z ′

∂xj
= 0

∂ Z ′

∂si
≤ 0 si ≥ 0 and si

∂ Z ′

∂si
= 0 (13.10)

∂ Z ′

∂λi
= 0

(
i = 1, 2
j = 1, 2, 3

)

Note that the derivatives ∂ Z ′/∂λi are still to be set strictly equal to zero. (Why?)
Each line of (13.10) relates to a different type of variable. But we can consolidate the

last two lines and, in the process, eliminate the dummy variable si from the first-order con-
dition. Inasmuch as ∂ Z ′/∂si = −λi , the second line of (13.10) tells us that we must have
−λi ≤ 0, si ≥ 0, and −siλi = 0, or equivalently,

si ≥ 0 λi ≥ 0 and siλi = 0 (13.11)

But the third line—a restatement of the constraints in (13.8′)—means that si = ri −
gi (x1, x2, x3). By substituting the latter into (13.11), therefore, we can combine the second
and third lines of (13.10) into

ri − gi (x1, x2, x3) ≥ 0 λi ≥ 0 and λi [ri − gi (x1, x2, x3)] = 0

This enables us to express the first-order condition (13.10) in an equivalent form without
the dummy variables. Using the symbol gi

j to denote ∂gi/∂xj , we now write

∂ Z ′

∂xj
= f j − (

λ1g1
j + λ2g2

j

) ≤ 0 xj ≥ 0 and xj
∂ Z ′

∂xj
= 0

ri − gi (x1, x2, x3) ≥ 0 λi ≥ 0 and λi [ri − gi (x1, x2, x3)] = 0

(13.12)

These, then, are the Kuhn-Tucker conditions for problem (13.8), or, more accurately, one
version of the Kuhn-Tucker conditions, expressed in terms of the Lagrangian function Z ′

in (13.9).
Now that we know the results, though, it is possible to obtain the same set of conditions

more directly by using a different Lagrangian function. Given the problem (13.9), let us
ignore the nonnegativity restrictions as well as the inequality signs in the constraints and
write the purely classical type of Lagrangian function Z:

Z = f (x1, x2, x3) + λ1[r1 − g1(x1, x2, x3)] + λ2[r2 − g2(x1, x2, x3)] (13.13)
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Then let us do the following: (1) set the partial derivatives ∂ Z/∂xj ≤ 0, but ∂ Z/∂λi ≥ 0,
(2) impose nonnegativity restrictions on xj and λi , and (3) require complementary
slackness to prevail between each variable and the partial derivative of Z with respect to
that variable, that is, require their product to vanish. Since the results of these steps,
namely,

∂ Z

∂xj
= f j − (

λ1g1
j + λ2g2

j

) ≤ 0 xj ≥ 0 and xj
∂ Z

∂xj
= 0

∂ Z

∂λi
= ri − gi (x1, x2, x3) ≥ 0 λi ≥ 0 and λi

∂ Z

∂λi
= 0

(13.14)

are identical with (13.12), the Kuhn-Tucker conditions are expressible also in terms of the
Lagrangian function Z (as against Z ′). Note that, by switching from Z ′ to Z, we can not only
arrive at the Kuhn-Tucker conditions more directly, but also identify the expression
ri − gi (x1, x2, x3)—which was left nameless in (13.12)—as the partial derivative ∂ Z/∂λi .
In the subsequent discussion, therefore, we shall only use the (13.14) version of the Kuhn-
Tucker conditions, based on the Lagrangian function Z.

If we cast the familiar problem of utility maximization into the nonlinear programming
mold, we may have a problem with an inequality constraint as follows:

Maximize U = U (x, y)

subject to Px x + Py y ≤ B

and x, y ≥ 0

Note that, with the inequality constraint, the consumer is no longer required to spend the
entire amount B.

To add a new twist to the problem, however, let us suppose that a ration has been im-
posed on commodity x equal to X0. Then the consumer would face a second constraint, and
the problem changes to 

Maximize U = U (x, y)

subject to Px x + Py y ≤ B

x ≤ X0

and x, y ≥ 0

The Lagrangian function is

Z = U (x, y) + λ1(B − Px x − Py y) + λ2(X0 − x)

and the Kuhn-Tucker conditions are

Zx = Ux − Pxλ1 − λ2 ≤ 0 x ≥ 0 and x Zx = 0
Zy = Uy − Pyλ1 ≤ 0 y ≥ 0 and yZy = 0

Zλ1 = B − Px y − Py y ≥ 0 λ1 ≥ 0 and λ1Zλ1 = 0
Zλ2 = X0 − x ≥ 0 λ2 ≥ 0 and λ2Zλ2 = 0

It is useful to examine the implications of the third column of the Kuhn-Tucker condi-
tions. The condition λ1 Zλ1 = 0, in particular, requires that

λ1(B − Px x − Py y) = 0

Example 1
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Therefore, we must have either

λ1 = 0 or B − Px x − Py y = 0

If we interpret λ1 as the marginal utility of budget money (income), and if the budget con-
straint is nonbinding (satisfied as an inequality in the solution, with money left over), the
marginal utility of B should be zero (λ1 = 0).

Similarly, the condition λ2 Zλ2 = 0 requires that either

λ2 = 0 or X0 − x = 0

Since λ2 can be interpreted as the marginal utility of relaxing the constraint, we see that if
the ration constraint is nonbinding, the marginal utility of relaxing the constraint should be
zero (λ2 = 0).

This feature, referred to as complementary slackness, plays an essential role in the search
for a solution. We shall now illustrate this with a numerical example:

Maximize U = xy

subject to x + y ≤ 100

x ≤ 40

and x, y ≥ 0

The Lagrangian is
Z = xy + λ1(100 − x − y) + λ2(40 − x)

and the Kuhn-Tucker conditions become

Zx = y − λ1 − λ2 ≤ 0 x ≥ 0 and x Zx = 0
Zy = x − λ1 ≤ 0 y ≥ 0 and yZy = 0

Zλ1 = 100 − x − y ≥ 0 λ1 ≥ 0 and λ1 Zλ1 = 0
Zλ2 = 40 − x ≥ 0 λ2 ≥ 0 and λ2 Zλ2 = 0

To solve a nonlinear programming problem, the typical approach is one of trial and
error. We can, for example, start by trying a zero value for a choice variable. Setting a vari-
able equal to zero always simplifies the marginal conditions by causing certain terms to
drop out. If appropriate nonnegative values of Lagrange multipliers can then be found that
satisfy all the marginal inequalities, the zero solution will be optimal. If, on the other hand,
the zero solution violates some of the inequalities, then we must let one or more choice vari-
ables be positive. For every positive choice variable, we may, by complementary slackness,
convert a weak inequality marginal condition into a strict equality. Properly solved, such an
equality will lead us either to a solution, or to a contradiction that would then compel us to
try something else. If a solution exists, such trials will eventually enable us to uncover it. We
can also start by assuming one of the constraints to be nonbinding. Then the related
Lagrange multiplier will be zero by complementary slackness and we have thus eliminated
a variable. If this assumption leads to a contradiction, then we must treat the said constraint
as a strict equality and proceed on that basis.

For the present example, it makes no sense to try x = 0 or y = 0, for then we would have
U = xy = 0. We therefore assume both x and y to be nonzero, and deduce Zx = Zy = 0
from complementary slackness. This means

y − λ1 − λ2 = x − λ1(= 0)

so that y − λ2 = x .
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Now, assume the ration constraint to be nonbinding in the solution, which implies that
λ2 = 0. Then we have x = y, and the given budget B = 100 yields the trial solution
x = y = 50. But this solution violates the ration constraint x ≤ 40. Hence we must adopt
the alternative assumption that the ration constraint is binding with x∗ = 40. The budget
constraint then allows the consumer to have y ∗ = 60. Moreover, since complementary
slackness dictates that Zx = Zy = 0, we can readily calculate that λ∗

1 = 40, and λ∗
2 = 20.

Interpretation of the Kuhn-Tucker Conditions
Parts of the Kuhn-Tucker conditions (13.14) are merely a restatement of certain aspects of
the given problem. Thus the conditions xj ≥ 0 merely repeat the nonnegativity restrictions,
and the conditions ∂ Z/∂λi ≥ 0 merely reiterate the constraints. To include these in (13.14),
however, has the important advantage of revealing more clearly the remarkable symmetry
between the two types of variables, xj (choice variable) and λi (Lagrange multipliers). To
each variable in each category, there corresponds a marginal condition—∂ Z/∂xj ≤ 0 or
∂ Z/∂λi ≥ 0—to be satisfied by the optimal solution. Each of the variables must be non-
negative as well. And, finally, each variable is characterized by complementary slackness in
relation to a particular partial derivative of the Lagrangian function Z. This means that, for
each xj , we must find in the optimal solution that either the marginal condition holds as an
equality, as in the classical context, or the choice variable in question must take a zero
value, or both. Analogously, for each λi , we must find in the optimal solution that either
the marginal condition holds as an equality—meaning that the ith constraint is exactly
satisfied—or the Lagrange multiplier vanishes, or both.

An even more explicit interpretation is possible when we look at the expanded expres-
sions for ∂ Z/∂xj and ∂ Z/∂λi in (13.14). Assume the problem to be the familiar production
problem. Then we have

f j ≡ marginal gross profit of jth product

λi ≡ shadow price of ith resource (the opportunity cost of using a unit of the
ith resource)

gi
j ≡ amount of ith resource used up in producing the marginal unit of jth product

λi gi
j ≡ marginal imputed cost of ith resource incurred in producing a unit of

jth product∑
i

λi g
i
j ≡ aggregate marginal imputed cost of jth product

Thus the marginal condition

∂ Z

∂xj
= f j −

∑
i

λi g
i
j ≤ 0

requires that the marginal gross profit of the jth product be no greater than its aggregate
marginal imputed cost; i.e., no underimputation is permitted. The complementary-
slackness condition then means that, if the optimal solution calls for the active production
of the jth product (x∗

j > 0), the marginal gross profit must be exactly equal to the aggregate
marginal imputed cost (∂ Z/∂x∗

j = 0), as would be the situation in the classical optimiza-
tion problem. If, on the other hand, the marginal gross profit optimally falls short of the ag-
gregate imputed cost (∂ Z/∂x∗

j < 0), entailing excess imputation, then that product must
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not be produced (x∗
j = 0).† This latter situation is something that can never occur in the

classical context, for if the marginal gross profit is less than the marginal imputed cost, then
the output should in that framework be reduced all the way to the level where the marginal
condition is satisfied as an equality. What causes the situation of ∂ Z/∂x∗

j < 0 to qualify as
an optimal one here, is the explicit specification of nonnegativity in the present framework.
For then the most we can do in the way of output reduction is to lower production to the
level x∗

j = 0, and if we still find ∂ Z/∂x∗
j < 0 at the zero output, we stop there anyway.

As for the remaining conditions, which relate to the variables λi, their meanings are even
easier to perceive. First of all, the marginal condition ∂ Z/∂λi ≥ 0 merely requires the firm to
stay within the capacity limitation of every resource in the plant.The complementary-slackness
condition then stipulates that, if the ith resource is not fully used in the optimal solution
(∂ Z/∂λ∗

i > 0), the shadow price of that resource—which is never allowed to be negative—
must be set equal to zero (λ∗

i = 0). On the other hand, if a resource has a positive shadow price
in the optimal solution (λ∗

i > 0), then it is perforce a fully utilized resource (∂ Z/∂λ∗
i = 0).

It is also possible, of course, to take the Lagrange-multiplier value λ∗
i to be a measure

of how the optimal value of the objective function reacts to a slight relaxation of the ith
constraint. In that light, complementary slackness would mean that, if the ith constraint is
optimally not binding (∂ Z/∂λ∗

i > 0), then relaxing that particular constraint will not affect
the optimal value of the gross profit (λ∗

i = 0)—just as loosening a belt which is not con-
stricting one’s waist to begin with will not produce any greater comfort. If, on the other
hand, a slight relaxation of the ith constraint (increasing the endowment of the ith resource)
does increase the gross profit (λ∗

i > 0), then that resource constraint must in fact be bind-
ing in the optimal solution (∂ Z/∂λ∗

i = 0).

The n-Variable, m-Constraint Case
The preceding discussion can be generalized in a straightforward manner to when there are
n choice variables and m constraints. The Lagrangian function Z will appear in the more
general form

Z = f (x1, x2, . . . , xn) +
m∑

i=1

λi [ri − gi (x1, x2, . . . , xn)] (13.15)

And the Kuhn-Tucker conditions will simply be

∂ Z

∂xj
≤ 0 xj ≥ 0 and xj

∂ Z

∂xj
= 0 [maximization]

∂ Z

∂λi
≥ 0 λi ≥ 0 and λi

∂ Z

∂λi
= 0

(
i = 1, 2, . . . , m
j = 1, 2, . . . , n

) (13.16)

Here, in order to avoid a cluttered appearance, we have not written out the expanded
expressions for the partial derivatives ∂ Z/∂xj and ∂ Z/∂λi . But you are urged to write them
out for a more detailed view of the Kuhn-Tucker conditions, similar to what was given in
(13.14). Note that, aside from the change in the dimension of the problem, the Kuhn-Tucker
conditions remain entirely the same. The interpretation of these conditions should naturally
also remain the same.
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What if the problem is one of minimization? One way of handling it is to convert the
problem into a maximization problem and then apply (13.6). To minimize C is equivalent
to maximizing −C, so such a conversion is always feasible. But we must, of course, also re-
verse the constraint inequalities by multiplying every constraint through by −1. Instead of
going through the conversion process, however, we may—again using the Lagrangian func-
tion Z as defined in (13.15)—directly apply the minimization version of the Kuhn-Tucker
conditions as follows:

∂ Z

∂xj
≥ 0 xj ≥ 0 and xj

∂ Z

∂xj
= 0 [minimization]

∂ Z

∂λi
≤ 0 λi ≥ 0 and λi

∂ Z

∂λi
= 0

(
i = 1, 2, . . . , m
j = 1, 2, . . . , n

) (13.17)

This you should compare with (13.16).
Reading (13.16) and (13.17) horizontally (rowwise), we see that the Kuhn-Tucker condi-

tions for both maximization and minimization problems consist of a set of conditions relating
to the choice variables xj (first row) and another set relating to the Lagrange multipliers λi

(second row). Reading them vertically (columnwise) on the other hand, we note that, for each
xj and λi , there is a marginal condition (first column), a nonnegativity restriction (second
column), and a complementary-slackness condition (third column). In any given problem,
the marginal conditions pertaining to the choice variables always differ, as a group, from the
marginal conditions for the Lagrange multipliers in the sense of inequality they take.

Subject to the proviso to be explained in Sec. 13.2, the Kuhn-Tucker maximum condi-
tions (13.16) and minimum conditions (13.17) are necessary conditions for a local maxi-
mum and local minimum, respectively. But since a global maximum (minimum) must also
be a local maximum (minimum), the Kuhn-Tucker conditions can also be taken as neces-
sary conditions for a global maximum (minimum), subject to the same proviso.

Let us apply the Kuhn-Tucker conditions to solve a minimization problem:

Minimize C = (x1 − 4)2 + (x2 − 4)2

subject to 2x1 + 3x2 ≥ 6
−3x1 − 2x2 ≥ −12

and x1, x2 ≥ 0

The Lagrangian function for this problem is

Z = (x1 − 4)2 + (x2 − 4)2 + λ1(6 − 2x1 − 3x2) + λ2(−12 + 3x1 + 2x2)

Since the problem is one of minimization, the appropriate conditions are (13.17), which
include the four marginal conditions

∂Z
∂x1

= 2(x1 − 4) − 2λ1 + 3λ2 ≥ 0

∂Z
∂x2

= 2(x2 − 4) − 3λ1 + 2λ2 ≥ 0

∂Z
∂λ1

= 6 − 2x1 − 3x2 ≤ 0

∂Z
∂λ2

= −12 + 3x1 + 2x2 ≤ 0

(13.18)

plus the nonnegativity and complementary-slackness conditions.

Example 2
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To find a solution, we again use the trial-and-error approach, realizing that the first few
trials may lead us into a blind alley. Suppose we first try λ1 > 0 and λ2 > 0 and check
whether we can find corresponding x1 and x2 values that satisfy both constraints. With
positive Lagrange multipliers, we must have ∂Z/∂λ1 = ∂Z/∂λ2 = 0. From the last two lines
of (13.18), we can thus write

2x1 + 3x2 = 6 and 3x1 + 2x2 = 12

These two equations yield the trial solution x1 = 4
4
5

and x2 = −1
1
5

, which violates the
nonnegativity restriction on x2.

Let us next try x1 > 0 and x2 > 0, which would imply ∂Z/∂x1 = ∂Z/∂x2 = 0 by comple-
mentary slackness. Then, from the first two lines of (13.18), we can write

2(x1 − 4) − 2λ1 + 3λ2 = 0 and 2(x2 − 4) − 3λ1 + 2λ2 = 0 (13.19)

Multiplying the first equation by 2, and the second equation by 3, then subtracting the lat-
ter from the former, we can eliminate λ2 and obtain the result

4x1 − 6x2 + 5λ1 + 8 = 0

By further assuming λ1 = 0, we can derive the following relationship between x1 and x2:

x1 − 3
2

x2 = −2 (13.20)

In order to solve for the two variables, however, we need another relationship between x1

and x2. For this purpose, let us assume that λ2 �= 0, so that ∂Z/∂λ2 = 0. Then, from the last
two lines of (13.18), we can write (after rearrangement)

3x1 + 2x2 = 12 (13.21)

Together, (13.20) and (13.21) yield another trial solution

x1 = 28
13

(
= 2

2
13

)
> 0 x2 = 36

13

(
= 2

10
13

)
> 0

Substituting these values into (13.19), and solving for the Lagrange multipliers, we get

λ1 = 0 λ2 = 16
13

(
= 1

3
13

)
> 0

Since the solution values for the four variables are all nonnegative and satisfy both con-
straints, they are acceptable as the final solution.

EXERCISE 13.1

1. Draw a set of diagrams similar to those in Fig. 13.1 for the minimization case, and deduce
a set of necessary conditions for a local minimum corresponding to (13.2) through
(13.4). Then condense these conditions into a single statement similar to (13.5).

2. (a) Show that, in (13.16), instead of writing

λi
∂Z
∂λi

= 0 (i = 1, . . . , m)

as a set of m separate conditions, it is sufficient to write a single equation in the
form of
m∑

i=1

λi
∂Z
∂λi

= 0
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(b) Can we do the same for the following set of conditions?

xj
∂Z
∂xj

= 0 ( j = 1, . . . , n)

3. Based on the reasoning used in Prob. 2, which set (or sets) of conditions in (13.17) can
be condensed into a single equation?

4. Suppose the problem is
Minimize C = f (x1, x2, . . . , xn)
subject to gi (x1, x2, . . . , xn) ≥ ri

and xj ≥ 0
(

i = 1, 2, . . . , m
j = 1, 2, . . . , n

)
.

Write the Lagrangian function, take the derivatives ∂Z/∂xj and ∂Z/∂λi and write out
the expanded version of the Kuhn-Tucker minimum conditions (13.17).

5. Convert the minimization problem in Prob. 4 into a maximization problem, formulate
the Lagrangian function, take the derivatives with respect to xj and λi , and apply the
Kuhn-Tucker maximum conditions (13.16). Are the results consistent with those
obtained in Prob. 4?

13.2 The Constraint Qualification
The Kuhn-Tucker conditions are necessary conditions only if a particular proviso is satis-
fied. That proviso, called the constraint qualification, imposes a certain restriction on the
constraint functions of a nonlinear programming problem, for the specific purpose of rul-
ing out certain irregularities on the boundary of the feasible set, that would invalidate the
Kuhn-Tucker conditions should the optimal solution occur there.

Irregularities at Boundary Points
Let us first illustrate the nature of such irregularities by means of some concrete examples.

Maximize π = x1

subject to x2 − (1 − x1)3 ≤ 0

and x1, x2 ≥ 0

As shown in Fig. 13.2, the feasible region is the set of points that lie in the first quadrant
on or below the curve x2 = (1 − x1)3. Since the objective function directs us to maximize
x1, the optimal solution is the point (1, 0). But the solution fails to satisfy the Kuhn-Tucker
maximum conditions. To check this, we first write the Lagrangian function

Z = x1 + λ1[−x2 + (1 − x1)3]

As the first marginal condition, we should then have

∂Z
∂x1

= 1 − 3λ1(1 − x1)2 ≤ 0

In fact, since x∗
1 = 1 is positive, complementary slackness requires that this derivative vanish

when evaluated at the point (1, 0). However, the actual value we get happens to be
∂Z/∂x∗

1 = 1, thus violating the given marginal condition.

Example 1
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The reason for this anomaly is that the optimal solution (1, 0) occurs in this example at
an outward-pointing cusp, which constitutes one type of irregularity that can invalidate the
Kuhn-Tucker conditions at a boundary optimal solution. A cusp is a sharp point formed
when a curve takes a sudden reversal in direction, such that the slope of the curve on one
side of the point is the same as the slope of the curve on the other side of the point. Here,
the boundary of the feasible region at first follows the constraint curve, but when the point
(1, 0) is reached, it takes an abrupt turn westward and follows the trail of the horizontal axis
thereafter. Since the slopes of both the curved side and the horizontal side of the boundary
are zero at the point (1, 0), that point is a cusp.

Cusps are the most frequently cited culprits for the failure of the Kuhn-Tucker conditions,
but the truth is that the presence of a cusp is neither necessary nor sufficient to cause those
conditions to fail at an optimal solution. Examples 2 and 3 will confirm this.

To the problem of Example 1, let us add a new constraint

2x1 + x2 ≤ 2

whose border, x2 = 2 − 2x1, plots as a straight line with slope −2 which passes through the
optimal point in Fig. 13.2. Clearly, the feasible region remains the same as before, and so
does the optimal solution at the cusp. But if we write the new Lagrangian function

Z = x1 + λ1[−x2 + (1 − x1)3] + λ2[2 − 2x1 − x2]

and the marginal conditions
∂Z
∂x1

= 1 − 3λ1(1 − x1)2 − 2λ2 ≤ 0

∂Z
∂x2

= −λ1 − λ2 ≤ 0

∂Z
∂λ1

= −x2 + (1 − x1)3 ≥ 0

∂Z
∂λ2

= 2 − 2x1 − x2 ≥ 0

Example 2
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it turns out that the values x∗
1 = 1, x∗

2 = 0, λ∗
1 = 1, and λ∗

2 = 1
2 do satisfy these four inequal-

ities, as well as the nonnegativity and complementary-slackness conditions. As a matter of
fact, λ∗

1 can be assigned any nonnegative value (not just 1), and all the conditions can still
be satisfied—which goes to show that the optimal value of a Lagrange multiplier is not
necessarily unique. More importantly, however, this example shows that the Kuhn-Tucker
conditions can remain valid despite the cusp.

The feasible region of the problem

Maximize π = x2 − x2
1

subject to −
(
10 − x2

1 − x2

)3 ≤ 0

−x1 ≤ −2
and x1, x2 ≥ 0

as shown in Fig. 13.3, contains no cusp anywhere. Yet, at the optimal solution, (2, 6), the
Kuhn-Tucker conditions nonetheless fail to hold. For, with the Lagrangian function

Z = x2 − x2
1 + λ1

(
10 − x2

1 − x2

)3 + λ2(−2 + x1)

the second marginal condition would require that

∂Z
∂x2

= 1 − 3λ1

(
10 − x2

1 − x2

)2 ≤ 0

Indeed, since x∗
2 is positive, this derivative should vanish when evaluated at the point (2, 6).

But actually we get ∂Z/∂x2 = 1, regardless of the value assigned to λ1. Thus the Kuhn-
Tucker conditions can fail even in the absence of a cusp—nay, even when the feasible region
is a convex set as in Fig. 13.3. The fundamental reason why cusps are neither necessary nor
sufficient for the failure of the Kuhn-Tucker conditions is that the preceding irregularities
referred to before relate, not to the shape of the feasible region per se, but to the forms of
the constraint functions themselves.

Example 3
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The Constraint Qualification
Boundary irregularities—cusp or no cusp—will not occur if a certain constraint qualifica-
tion is satisfied.

To explain this, let x∗ ≡ (x∗
1 , x∗

2 , . . . , x∗
n ) be a boundary point of the feasible region and

a possible candidate for a solution, and let dx ≡ (dx1, dx2, . . . , dxn) represent a particular
direction of movement from the said boundary point. The direction-of-movement interpre-
tation of the vector dx is perfectly in line with our earlier interpretation of a vector as a
directed line segment (an arrow), but here, the point of departure is the point x∗ instead of
the point of origin, and so the vector dx is not in the nature of a radius vector. We shall now
impose two requirements on the vector dx. First, if the jth choice variable has a zero value
at the point x∗, then we shall only permit a nonnegative change on the xj axis, that is,

dxj ≥ 0 if x∗
j = 0 (13.22)

Second, if the ith constraint is exactly satisfied at the point x∗, then we shall only allow val-
ues of dx1, . . . , dxn such that the value of the constraint function gi (x∗) will not increase
(for a maximization problem) or will not decrease (for a minimization problem), that is,

dgi (x∗) = gi
1 dx1 + gi

2 dx2 + · · · + gi
n dxn

{≤ 0 (max.)

≥ 0 (min.)
if gi (x∗) = ri

(13.23)

where all the partial derivatives of gi
j are to be evaluated at x∗. If a vector dx satisfies

(13.22) and (13.23), we shall refer to it as a test vector. Finally, if there exists a differen-
tiable arc that (1) emanates from the point x∗, (2) is contained entirely in the feasible
region, and (3) is tangent to a given test vector, we shall call it a qualifying arc for that test
vector. With this background, the constraint qualification can be stated simply as follows:

The constraint qualification is satisfied if, for any point x∗ on the boundary of the feasible
region, there exists a qualifying arc for every test vector dx.

We shall show that the optimal point (1, 0) of Example 1 in Fig. 13.2, which fails the Kuhn-
Tucker conditions, also fails the constraint qualification. At that point, x∗

2 = 0; thus the test
vector must satisfy

dx2 ≥ 0 [by (13.22)]

Moreover, since the (only) constraint, g1 = x2 − (1 − x1)3 ≤ 0, is exactly satisfied at (1, 0),
we must let [by (13.23)]

g1
1 dx1 + g1

2 dx2 = 3(1 − x∗
1)2 dx1 + dx2 = dx2 ≤ 0

These two requirements together imply that we must let dx2 = 0. In contrast, we are free
to choose dx1. Thus, for instance, the vector (dx1, dx2) = (2, 0) is an acceptable test vector,
as is (dx1, dx2) = (−1, 0). The latter test vector would plot in Fig. 13.2 as an arrow starting
from (1, 0) and pointing in the due-west direction (not drawn), and it is clearly possible to
draw a qualifying arc for it. (The curved boundary of the feasible region itself can serve as a
qualifying arc.) On the other hand, the test vector (dx1, dx2) = (2, 0) would plot as an
arrow starting from (1, 0) and pointing in the due-east direction (not drawn). Since there is
no way to draw a smooth arc tangent to this vector and lying entirely within the feasible
region, no qualifying arcs exist for it. Hence the optimal solution point (1, 0) violates the
constraint qualification.

Example 4
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Referring to Example 2, let us illustrate that, after an additional constraint 2x1 + x2 ≤ 2 is
added to Fig. 13.2, the point (1, 0) will satisfy the constraint qualification, thereby revali-
dating the Kuhn-Tucker conditions.

As in Example 4, we have to require dx2 ≥ 0 (because x∗
2 = 0) and dx2 ≤ 0 (because the

first constraint is exactly satisfied); thus, dx2 = 0. But the second constraint is also exactly
satisfied, thereby requiring

g2
1 dx1 + g2

2 dx2 = 2dx1 + dx2 = 2dx1 ≤ 0 [by (13.23)]

With nonpositive dx1 and zero dx2, the only admissible test vectors—aside from the null
vector itself—are those pointing in the due-west direction in Fig. 13.2 from (1, 0). All of
these lie along the horizontal axis in the feasible region, and it is certainly possible to draw
a qualifying arc for each test vector. Hence, this time the constraint qualification indeed is
satisfied.

Linear Constraints
Earlier, in Example 3, it was demonstrated that the convexity of the feasible set does not
guarantee the validity of the Kuhn-Tucker conditions as necessary conditions. However, if
the feasible region is a convex set formed by linear constraints only, then the constraint
qualification will invariably be met, and the Kuhn-Tucker conditions will always hold at an
optimal solution. This being the case, we need never worry about boundary irregularities
when dealing with a nonlinear programming problem with linear constraints.

Let us illustrate the linear-constraint result in the two-variable, two-constraint framework.
For a maximization problem, the linear constraints can be written as

a11x1 + a12x2 ≤ r1
a21x1 + a22x2 ≤ r2

where we shall take all the parameters to be positive. Then, as indicated in Fig. 13.4, the first
constraint border will have a slope of −a11/a12 < 0, and the second, a slope of −a21/a22 < 0.
The boundary points of the shaded feasible region fall into the following five types: (1) the
point of origin, where the two axes intersect, (2) points that lie on one axis segment, such

Example 6
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as J and S, (3) points at the intersection of one axis and one constraint border, namely, K and
R, (4) points lying on a single constraint border, such as L and N, (5) the point of intersec-
tion of the two constraints, M. We may briefly examine each type in turn with reference to
the satisfaction of the constraint qualification.

1. At the origin, no constraint is exactly satisfied, so we may ignore (13.23). But since
x1 = x2 = 0, we must choose test vectors with dx1 ≥ 0 and dx2 ≥ 0, by (13.22). Hence
all test vectors from the origin must point in the due-east, due-north, or northeast direc-
tions, as depicted in Fig. 13.4. These vectors all happen to fall within the feasible set, and
a qualifying arc clearly can be found for each.

2. At a point like J, we can again ignore (13.23). The fact that x2 = 0 means that we must
choose dx2 ≥ 0, but our choice of dx1 is free. Hence all vectors would be acceptable ex-
cept those pointing southward (dx2 < 0). Again all such vectors fall within the feasible
region, and there exists a qualifying arc for each. The analysis of point S is similar.

3. At points K and R, both (13.22) and (13.23) must be considered. Specifically, at K, we have
to choose dx2 ≥ 0 since x2 = 0, so that we must rule out all southward arrows. The second
constraint being exactly satisfied, moreover, the test vectors for point K must satisfy

g2
1 dx1 + g2

2 dx2 = a21 dx1 + a22 dx2 ≤ 0 (13.24)

Since at K we also have a21x1 + a22x2 = r2 (second constraint border), however, we may
add this equality to (13.24) and modify the restriction on the test vector to the form

a21(x1 + dx1) + a22(x2 + dx2) ≤ r2 (13.24’)

Interpreting (xj + dxj ) to be the new value of xj attained at the arrowhead of a test
vector, we may construe (13.24′) to mean that all test vectors must have their arrow-
heads located on or below the second constraint border. Consequently, all these vectors
must again fall within the feasible region, and a qualifying arc can be found for each. The
analysis of point R is analogous.

4. At points such as L and N, neither variable is zero and (13.22) can be ignored. However,
for point N, (13.23) dictates that

g1
1 dx1 + g1

2 dx2 = a11 dx1 + a12 dx2 ≤ 0 (13.25)

Since point N satisfies a11 dx1 + a12 dx2 = r1 (first constraint border), we may add this
equality to (13.25) and write

a11(x1 + dx1) + a12(x2 + dx2) ≤ r1 (13.25’)

This would require the test vectors to have arrowheads located on or below the first con-
straint border in Fig. 13.4. Thus we obtain essentially the same kind of result
encountered in the other cases. This analysis of point L is analogous.

5. At point M, we may again disregard (13.22), but this time (13.23) requires all test vec-
tors to satisfy both (13.24) and (13.25). Since we may modify the latter conditions to the
forms in (13.24′) and (13.25′), all test vectors must now have their arrowheads located
on or below the first as well as the second constraint borders. The result thus again
duplicates those of the previous cases.

In this example, it so happens that, for every type of boundary point considered, the test
vectors all lie within the feasible region. While this locational feature makes the qualifying
arcs easy to find, it is by no means a prerequisite for their existence. In a problem with a
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nonlinear constraint border, in particular, the constraint border itself may serve as a qualify-
ing arc for some test vector that lies outside of the feasible region. An example of this can
be found in one of the problems below.

EXERCISE 13.2

1. Check whether the solution point (x∗
1, x∗

2) = (2, 6) in Example 3 satisfies the constraint
qualification.

2. Maximize π = x1

subject to x2
1 + x2

2 ≤ 1
and x1, x2 ≥ 0
Solve graphically and check whether the optimal-solution point satisfies (a) the con-
straint qualification and (b) the Kuhn-Tucker conditions.

3. Minimize C = x1

subject to x2
1 − x2 ≥ 0

and x1, x2 ≥ 0
Solve graphically. Does the optimal solution occur at a cusp? Check whether the opti-
mal solution satisfies (a) the constraint qualification and (b) the Kuhn-Tucker minimum
conditions.

4. Minimize C = x1

subject to −x2 − (1 − x1)3 ≥ 0
and x1, x2 ≥ 0
Show that (a) the optimal solution (x∗

1, x∗
2) = (1, 0) does not satisfy the Kuhn-Tucker

conditions, but (b) by introducing a new multiplier λ0 ≥ 0, and modifying the
Lagrangian function (13.15) to the form

Z0 = λ0 f (x1, x2, . . . , xn) +
m∑

i=1

λ1[ri − gi (x1, x2, . . . , xn)]

the Kuhn-Tucker conditions can be satisfied at (1, 0). (Note: The Kuhn-Tucker condi-
tions on the multipliers extend to only λ1, . . . , λm, but not to λ0.)

13.3 Economic Applications

War-Time Rationing
Typically during times of war the civilian population is subject to some form of rationing
of basic consumer goods. Usually, the method of rationing is through the use of redeemable
coupons used by the government. The government will supply each consumer with an
allotment of coupons each month. In turn, the consumer will have to redeem a certain num-
ber of coupons at the time of purchase of a rationed good. This effectively means the con-
sumer pays two prices at the time of the purchase. He or she pays both the coupon price and
the monetary price of the rationed good. This requires the consumer to have both sufficient
funds and sufficient coupons in order to buy a unit of the rationed good.

Consider the case of a two-good world where both goods, x and y, are rationed. Let the
consumer’s utility function be U = U (x , y). The consumer has a fixed money budget of B
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and faces exogenous prices Px and Py . Further, the consumer has an allotment of coupons,
denoted C, which can be used to purchase either x or y at a coupon price of cx and cy .
Therefore the consumer’s maximization problem is

Maximize U = U (x , y)

subject to Px x + Py y ≤ B

cx x + cy y ≤ C

and x , y ≥ 0

The Lagrangian for the problem is

Z = U (x , y) + λ1(B − Px x − Py y) + λ2(C − cx x + cy y)

where λ1 and λ2 are the Lagrange multipliers. Since both constraints are linear, the con-
straint qualification is satisfied and the Kuhn-Tucker conditions are necessary:

Zx = Ux − λ1 Px − λ2cx ≤ 0 x ≥ 0 x Zx = 0
Zy = Uy − λ1 Py − λ2cy ≤ 0 y ≥ 0 y Zy = 0
Zλ1 = B − Px x − Py y ≥ 0 λ1 ≥ 0 λ1 Zλ1 = 0
Zλ2 = C − cx x − cy y ≥ 0 λ2 ≥ 0 λ2 Zλ2 = 0

Suppose the utility function is of the form U = xy2. Further, let B = 100 and Px = Py = 1
while C = 120, cx = 2, and cy = 1.

The Lagrangian takes the specific form

Z = xy2 + λ1(100 − x − y) + λ2(120 − 2x − y)

The Kuhn-Tucker conditions are now

Zx = y2 − λ1 − 2λ2 ≤ 0 x ≥ 0 x Zx = 0
Zy = 2xy − λ1 − λ2 ≤ 0 y ≥ 0 yZy = 0

Zλ1 = 100 − x − y ≥ 0 λ1 ≥ 0 λ1 Zλ1 = 0
Zλ2 = 120 − 2x − y ≥ 0 λ2 ≥ 0 λ2 Zλ2 = 0

Again, the solution procedure involves a certain amount of trial and error. We can first
choose one of the constraints to be nonbinding and solve for x and y. Once found, use
these values to test if the constraint chosen to be nonbinding is violated. If it is, then redo
the procedure choosing another constraint to be nonbinding. If violation of the nonbind-
ing constraint occurs again, then we can assume both constraints bind and the solution is
determined only by the constraints.

Step 1: Assume that the second (ration) constraint is nonbinding in the solution, so that
λ2 = 0 by complementary slackness. But let x, y, and λ1 be positive so that complementary
slackness would give us the following three equations:

Zx = y 2 − λ1 = 0

Zy = 2xy − λ1 = 0

Zλ1 = 100 − x − y = 0

Solving for x and y yields a trial solution

x = 331/3 y = 662/3

Example 1
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However, when we substitute these solutions into the coupon constraint we find that

2(331/3) + 662/3 = 1331/3 > 120

This solution violates the coupon constraint, and must be rejected.
Step 2: Now let us reverse the assumptions on λ1 and λ2 so that λ1 = 0, but let

λ2, x, y > 0. Then, from the marginal conditions, we have

Zx = y 2 − 2λ2 = 0

Zy = 2xy − λ2 = 0

Zλ1 = 120 − 2x − y = 0

Solving this system of equations yields another trial solution

x = 20 y = 80

which implies that λ2 = 2xy = 3,200. These solution values, together with λ1 = 0, satisfy
both the budget and ration constraints. Thus we can accept them as the final solution to
the Kuhn-Tucker conditions.

This optimal solution, however, contains a curious abnormality. With the budget con-
straint binding in the solution, we would normally expect the related Lagrange multiplier to
be positive, yet we actually have λ1 = 0. Thus, in this example, while the budget constraint
is mathematically binding (satisfied as a strict equality in the solution), it is economically non-
binding (not calling for a positive marginal utility of money).

Peak-Load Pricing
Peak and off-peak pricing and planning problems are commonplace for firms with capacity-
constrained production processes. Usually the firm has invested in capacity in order to
target a primary market. However there may exist a secondary market in which the firm can
often sell its product. Once the capital equipment has been purchased to service the firm’s
primary market, it is freely available (up to capacity) to be used in the secondary market.
Typical examples include schools and universities that build to meet daytime needs (peak),
but may offer night-school classes (off-peak); theaters that offer shows in the evening
(peak) and matinees (off-peak); and trucking companies that have dedicated routes but
may choose to enter “back-haul” markets. Since the capacity cost is a factor in the profit-
maximizing decision for the peak market and is already paid, it normally should not be a
factor in calculating optimal price and quantity for the smaller, off-peak market. However,
if the secondary market’s demand is close to the same size as the primary market, capacity
constraints may be an issue, especially since it is a common practice to price discriminate
and charge lower prices in off-peak periods. Even though the secondary market is smaller
than the primary, it is possible that, at the lower (profit-maximizing) price, off-peak demand
exceeds capacity. In such cases capacity choices must be made taking both markets into
account, making the problem a classic application of nonlinear programming.

Consider a profit-maximizing company that faces two average-revenue curves

P1 = P1(Q1) in the day time (peak period)

P2 = P2(Q2) in the night time (off-peak period)

To operate, the firm must pay b per unit of output, whether it is day or night. Furthermore,
the firm must purchase capacity at a cost of c per unit of capacity. Let K denote total capacity
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measured in units of Q. The firm must pay for capacity, regardless of whether it operates in
the off-peak period. Who should be charged for the capacity costs: peak, off-peak, or both
sets of customers? The firm’s maximization problem becomes

Maximize
Q1, Q2, K

π = P1 Q1 + P2 Q2 − b(Q1 + Q2) − cK

subject to Q1 ≤ K
Q2 ≤ K

where P1 = P1(Q1)
P2 = P2(Q2)

and Q1, Q2, K ≥ 0

In view that the total revenue for Qi ,

Ri ≡ Pi Qi = Pi (Qi )Qi

is a function of Qi alone, we can simplify the statement of the problem to 

Maximize π = R1(Q1) + R2(Q2) − b(Q1 + Q2) − cK

subject to Q1 ≤ K

Q2 ≤ K

and Q1, Q2, K ≥ 0

Note that both constraints are linear; thus the constraint qualification is satisfied and the
Kuhn-Tucker conditions are necessary.

The Lagrangian function is

Z = R1(Q1) + R2(Q2) − b(Q1 + Q2) − cK + λ1(K − Q1) + λ2(K − Q2)

and the Kuhn-Tucker conditions are

Z1 = MR1 − b − λ1 ≤ 0

Z2 = MR2 − b − λ2 ≤ 0

ZK = −c + λ1 + λ2 ≤ 0

Zλ1 = K − Q1 ≥ 0

Zλ2 = K − Q2 ≥ 0

Q1 ≥ 0

Q2 ≥ 0

K ≥ 0

λ1 ≥ 0

λ2 ≥ 0

Q1 Z1 = 0

Q2 Z2 = 0

K ZK = 0

λ1 Zλ1 = 0

λ2 Zλ2 = 0

where MRi is the marginal revenue of Qi (i = 1, 2).
The solution procedure again entails trial and error. Let us first assume that Q1, Q2,

K > 0. Then, by complementary slackness, we have

MR1 − b − λ1 = 0

MR2 − b − λ2 = 0

−c + λ1 + λ2 = 0 (λ1 = c − λ2)

(13.26)

which can be condensed into two equations after eliminating λ1:

MR1 = b + c − λ2

MR2 = b + λ2
(13.26’)

Then we proceed in two steps.
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Step 1: Since the off-peak market is a secondary market, its marginal-revenue function
(MR2) can be expected to lie below that of the primary market (MR1) as illustrated in
Fig. 13.5. Moreover, the capacity constraint is more likely to be nonbinding in the
secondary market so that λ2 is more likely to be zero. So we try λ2 = 0. Then (13.26′)
becomes

MR1 = b + c

MR2 = b
(13.26’’)

The fact that the primary market absorbs the entire capacity cost c implies that Q1 = K .
However, we still need to check whether the constraint Q2 ≤ K is satisfied. If so, we have
found a valid solution. Figure 13.5(a) illustrates the case where Q1 = K and Q2 < K in
the solution. The MR1 curve intersects the b + c line at point E1, and the MR2 curve inter-
sects the b line at point E2.

What if the previous trial solution entails Q2 > K , as would occur if the MR2 curve is
very close to MR1, so as to intersect the b line at an output larger than K? Then, of course,
the second constraint is violated, and we must reject the assumption of λ2 = 0, and proceed
to the next step.

Step 2: Now let us assume both Lagrange multipliers to be positive, and thus
Q1 = Q2 = K . Then, unable to eliminate any variables from (13.26), we have

MR1 = b + λ1

MR2 = b + λ2

c = λ1 + λ2

(13.26’’’)

This case is illustrated in Fig. 13.5(b), where points E1 and E2 satisfy the first two equa-
tions in (13.26′′′). From the third equation, we see that the capacity cost c is the sum of the
two Lagrange multipliers. This means λ1 and λ2 represent the portions of the capacity cost
borne respectively by the two markets.
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Suppose the average-revenue function during peak hours is

P1 = 22 − 10−5 Q1

and that during off-peak hours it is

P2 = 18 − 10−5 Q2

To produce a unit of output per half-day requires a unit of capacity costing 8 cents per day.
The cost of a unit of capacity is the same whether it is used at peak times only, or off-peak
also. In addition to the costs of capacity, it costs 6 cents in operating costs (labor and fuel)
to produce 1 unit per half-day (both day and evening).

If we assume that the capacity constraint is nonbinding in the secondary market
(λ2 = 0), then the given Kuhn-Tucker conditions become

λ1 = c = 8

22 − 2 × 10−5 Q1 = b + c = 14
18 − 2 × 10−5 Q2︸ ︷︷ ︸

MR

= b︸ ︷︷ ︸
MC

= 6

Solving this system gives us

Q1 = 400,000

Q2 = 600,000

which violates the assumption that the second constraint is nonbinding because Q2 >

Q1 = K .
Therefore, let us assume that both constraints are binding. Then Q1 = Q2 = Q and the

Kuhn-Tucker conditions become

λ1 + λ2 = 8

22 − 2 × 10−5 Q = 6 + λ1

18 − 2 × 10−5 Q = 6 + λ2

which yield the following solution

Q1 = Q2 = K = 500,000

λ1 = 6 λ2 = 2

P1 = 17 P2 = 13

Since the capacity constraint is binding in both markets, the primary market pays λ1 = 6 of
the capacity cost and the secondary market pays λ2 = 2.

EXERCISE 13.3

1. Suppose in Example 2 a unit of capacity costs only 3 cents per day.
(a) What would be the profit-maximizing peak and off-peak prices and quantities?
(b) What would be the values of the Lagrange multipliers? What interpretation do you

put on their values?
2. A consumer lives on an island where she produces two goods, x and y, according to the

production possibility frontier x2 + y2 ≤ 200, and she consumes all the goods herself.
Her utility function is

U = xy3

Example 2
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The consumer also faces an environmental constraint on her total output of both
goods. The environmental constraint is given by x + y ≤ 20.
(a) Write out the Kuhn-Tucker first-order conditions.
(b) Find the consumer’s optimal x and y. Identify which constraints are binding.

3. An electric company is setting up a power plant in a foreign country, and it has to plan its
capacity. The peak-period demand for power is given by P1 = 400 − Q1 and the off-peak
demand is given by P2 = 380 − Q2. The variable cost is 20 per unit (paid in both mar-
kets) and capacity costs 10 per unit which is only paid once and is used in both periods.
(a) Write out the Lagrangian and Kuhn-Tucker conditions for this problem.
(b) Find the optimal outputs and capacity for this problem.
(c) How much of the capacity is paid for by each market (i.e., what are the values of λ1

and λ2)?
(d) Now suppose capacity cost is 30 cents per unit (paid only once). Find quantities,

capacity, and how much of the capacity is paid for by each market (i.e., λ1 and λ2).

13.4 Sufficiency Theorems in Nonlinear Programming
In the previous sections, we have introduced the Kuhn-Tucker conditions and illustrated
their applications as necessary conditions in optimization problems with inequality con-
straints. Under certain circumstances, the Kuhn-Tucker conditions can also be taken as
sufficient conditions.

The Kuhn-Tucker Sufficiency Theorem: Concave Programming
In classical optimization problems, the sufficient conditions for maximum and minimum
are traditionally expressed in terms of the signs of second-order derivatives or differentials.
As we have shown in Sec. 11.5, however, these second-order conditions are closely related
to the concepts of concavity and convexity of the objective function. Here, in nonlinear
programming, the sufficient conditions can also be stated directly in terms of concavity and
convexity. And, in fact, these concepts will be applied not only to the objective function
f (x) but to the constraint functions gi (x) as well.

For the maximization problem, Kuhn and Tucker offer the following statement of suffi-
cient conditions (sufficiency theorem):

Given the nonlinear programming problem

Maximize π = f (x)

subject to gi (x) ≤ ri (i = 1, 2, . . . , m)

and x ≥ 0

if the following conditions are satisfied:

(a) the objective function f (x) is differentiable and concave in the nonnegative orthant 

(b) each constraint function gi (x) is differentiable and convex in the nonnegative orthant

(c) the point x∗ satisfies the Kuhn-Tucker maximum conditions

then x∗ gives a global maximum of π = f (x).

Note that, in this theorem, the constraint qualification is nowhere mentioned. This is
because we have already assumed, in condition (c), that the Kuhn-Tucker conditions are
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satisfied at x∗ and, consequently, the question of the constraint qualification is no longer
an issue.

As it stands, the above theorem indicates that conditions (a), (b), and (c) are sufficient to
establish x∗ to be an optimal solution. Looking at it differently, however, we may also in-
terpret it to mean that given (a) and (b), then the Kuhn-Tucker maximum conditions are
sufficient for a maximum. In the preceding section, we learned that the Kuhn-Tucker con-
ditions, though not necessary per se, become necessary when the constraint qualification
is satisfied. Combining this information with the sufficiency theorem, we may now state
that if the constraint qualification is satisfied and if conditions (a) and (b) are realized, then
the Kuhn-Tucker maximum conditions will be necessary-and-sufficient for a maximum.
This would be the case, for instance, when all the constraints are linear inequalities, which
is sufficient for satisfying the constraint qualification.

The maximization problem dealt with in the sufficiency theorem above is often referred to
as concave programming. This name arises because Kuhn and Tucker adopt the ≥ inequality
instead of the ≤ inequality in every constraint, so that condition (b) would require the gi (x)
functions to be all concave, like the f (x) function. But we have modified the formulation in
order to convey the idea that in a maximization problem, a constraint is imposed to “rein in”
(hence, ≤) the attempt to ascend to higher points on the objective function. Though different
in form, the two formulations are equivalent in substance. For brevity, we omit the proof.

As stated above, the sufficiency theorem deals only with maximization problems. But
adaptation to minimization problems is by no means difficult. Aside from the appropriate
changes in the theorem to reflect the reversal of the problem itself, all we have to do is to
interchange the two words concave and convex in conditions (a) and (b) and to use the
Kuhn-Tucker minimum conditions in condition (c). (See Exercise 13.4-1.)

The Arrow-Enthoven Sufficiency Theorem:
Quasiconcave Programming
To apply the Kuhn-Tucker sufficiency theorem, certain concavity-convexity specifications
must be met. These constitute quite stringent requirements. In another sufficiency theorem—
the Arrow-Enthoven sufficiency theorem†—these specifications are relaxed to the extent of
requiring only quasiconcavity and quasiconvexity in the objective and constraint functions.
With the requirements thus weakened, the scope of applicability of the sufficient conditions
is correspondingly widened.

In the original formulation of the Arrow-Enthoven paper, with a maximization problem
and with constraints in the ≥ form, the f (x) and gi (x) functions must uniformly be quasi-
concave in order for their theorem to be applicable. This gives rise to the name quasiconcave
programming. In our discussion here, however, we shall again use the ≤ inequality in the
constraints of a maximization problem and the ≥ inequality in the minimization problem.

The theorem is as follows:
Given the nonlinear programming problem

Maximize π = f (x)

subject to gi (x) ≤ ri (i = 1, 2, . . . , m)

and x ≥ 0
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if the following conditions are satisfied:

(a) the objective function f (x) is differentiable and quasiconcave in the nonnegative
orthant 

(b) each constraint function gi (x) is differentiable and quasiconvex in the nonnegative
orthant

(c) the point x∗ satisfies the Kuhn-Tucker maximum conditions

(d ) any one of the following is satisfied:

(d-i) f j (x∗) < 0 for at least one variable xj

(d-i i) f j (x∗) > 0 for some variable xj that can take on a positive value without
violating the constraints

(d-i ii) the n derivatives f j (x∗) are not all zero, and the function f (x) is twice
differentiable in the neighborhood of x∗ [i.e., all the second-order partial
derivatives of f (x) exist at x∗]

(d-iv ) the function f (x) is concave

then x∗ gives a global maximum of π = f (x).
Since the proof of this theorem is quite lengthy, we shall omit it here. However, we do

want to call your attention to a few important features of this theorem. For one thing, while
Arrow and Enthoven have succeeded in weakening the concavity-convexity specifications
to their quasiconcavity-quasiconvexity counterparts, they find it necessary to append a new
requirement, (d ). Note, though, that only one of the four alternatives listed under (d ) is
required to form a complete set of sufficient conditions. In effect, therefore, the above
theorem contains as many as four different sets of sufficient conditions for a maximum.
In the case of (d-iv), with f (x) concave, it would apear that the Arrow-Enthoven suffi-
ciency theorem becomes identical with the Kuhn-Tucker sufficiency theorem. But this is
not true. Inasmuch as Arrow and Enthoven only require the constraint functions gi (x) to be
quasiconvex, their sufficient conditions are still weaker.

As stated, the theorem lumps together the conditions (a) through (d ) as a set of sufficient
conditions. But it is also possible to interpret it to mean that, when (a), (b), and (d ) are sat-
isfied, then the Kuhn-Tucker maximum conditions become sufficient conditions for a max-
imum. Furthermore, if the constraint qualification is also satisfied, then the Kuhn-Tucker
conditions will become necessary-and-sufficient for a maximum.

Like the Kuhn-Tucker theorem, the Arrow-Enthoven theorem can be adapted with ease
to the minimization framework. Aside from the obvious changes that are needed to reverse
the direction of optimization, we simply have to interchange the words quasiconcave and
quasiconvex in conditions (a) and (b), replace the Kuhn-Tucker maximum conditions by
the minimum conditions, reverse the inequalities in (d-i) and (d-ii), and change the word
concave to convex in (d-iv).

A Constraint-Qualification Test
It was mentioned in Sec. 13.2 that if all constraint functions are linear, then the constraint
qualification is satisfied. In case the gi (x) functions are nonlinear, the following test offered
by Arrow and Enthoven may prove useful in determining whether the constraint qualifica-
tion is satisfied:
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For a maximization problem, if

(a) every constraint function gi (x) is differentiable and quasiconvex

(b) there exists a point x0 in the nonnegative orthant such that all the constraints are sat-
isfied as strict inequalities at x0

(c) one of the following is true:

(c-i) every gi (x) function is convex

(c-ii) the partial derivatives of every gi (x) are not all zero when evaluated at every
point x in the feasible region

then the constraint qualification is satisfied.
Again, this test can be adapted to the minimization problem with ease. To do so, just change
the word quasiconvex to quasiconcave in condition (a), and change the word convex to
concave in (c-i).

EXERCISE 13.4

1. Given: Minimize C = F (x)
subject to Gi (x) ≥ ri (i = 1, 2, . . . , m)
and x > 0

(a) Convert it into a maximization problem.
(b) What in the present problem are the equivalents of the f and gi functions in the

Kuhn-Tucker sufficiency theorem?
(c) Hence, what concavity-convexity conditions should be placed on the F and Gi

functions to make the sufficient conditions for a maximum applicable here?
(d) On the basis of the above, how would you state the Kuhn-Tucker sufficient condi-

tions for a minimum?
2. Is the Kuhn-Tucker sufficiency theorem applicable to:

(a) Maximize π = x1

subject to x2
1 + x2

3 ≤ 1
and x1, x2 ≥ 0

(b) Minimize C = (x1 − 3)2 + (x2 − 4)2

subject to x1 + x2 ≥ 4
and x1, x2 ≥ 0

(c) Minimize C = 2x1 + x2

subject to x2
1 − 4x1 + x2 ≥ 0

and x1, x2 ≥ 0

3. Which of the following functions are mathematically acceptable as the objective
function of a maximization problem which qualifies for the application of the Arrow-
Enthoven sufficiency theorem?
(a) f (x) = x3 − 2x
(b) f (x1, x2) = 6x1 − 9x2

(c) f (x1, x2) = x2 − ln x1 (Note: See Exercise 12.4-4.)
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4. Is the Arrow-Enthoven constraint qualification satisfied, given that the constraints of a
maximization problem are:
(a) x2

1 + (x2 − 5)2 ≤ 4 and 5x1 + x2 < 10
(b) x1 + x2 ≤ 8 and −x1x2 ≤ −8 (Note: −x1x2 is not convex.)

13.5 Maximum-Value Functions and the Envelope Theorem†

A maximum-value function is an objective function where the choice variables have been
assigned their optimal values. These optimal values of the choice variables are, in turn,
functions of the exogenous variables and parameters of the problem. Once the optimal val-
ues of the choice variables have been substituted into the original objective function, the
function indirectly becomes a function of the parameters only (through the parameters’ in-
fluence on the optimal values of the choice variables). Thus the maximum-value function is
also referred to as the indirect objective function.

The Envelope Theorem for Unconstrained Optimization
What is the significance of the indirect objective function? Consider that in any optimiza-
tion problem the direct objective function is maximized (or minimized) for a given set of
parameters. The indirect objective function traces out all the maximum values of the ob-
jective function as these parameters vary. Hence the indirect objective function is an
“envelope” of the set of optimized objective functions generated by varying the parameters
of the model. For most students of economics the first illustration of this notion of an
envelope arises in the comparison of short-run and long-run cost curves. Students are typ-
ically taught that the long-run average cost curve is an envelope of all the short-run average
cost curves (what parameter is varying along the envelope in this case?). A formal deriva-
tion of this concept is one of the exercises we will be doing in this section.

To illustrate, consider the following unconstrained maximization problem with two
choice variables x and y and one parameter φ:

Maximize U = f (x , y, φ) (13.27)

The first-order necessary condition is

fx (x , y, φ) = fy(x , y, φ) = 0 (13.28)

If second-order conditions are met, these two equations implicitly define the solutions

x∗ = x∗(φ) y∗ = y∗(φ) (13.29)

If we substitute these solutions into the objective function, we obtain a new function

V (φ) = f (x∗(φ), y∗(φ), φ) (13.30)

where this function is the value of f when the values of x and y are those that maximize
f (x , y, φ). Therefore, V (φ) is the maximum-value function (or indirect objective function).
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If we differentiate V with respect to φ, its only argument, we get

dV

dφ
= fx

∂x∗

∂φ
+ fy

∂y∗

∂φ
+ fφ (13.31)

However, from the first-order conditions we know fx = fy = 0. Therefore, the first two
terms disappear and the result becomes

dV

dφ
= fφ (13.31’)

This result says that, at the optimum, as φ varies, with x∗ and y∗ allowed to adjust, the
derivative dV/dφ gives the same result as if x∗ and y∗ are treated as constants. Note that φ
enters the maximum-value function (13.30) in three places: one direct and two indirect
(through x∗ and y∗). Equation (13.31′) shows that, at the optimum, only the direct effect of
φ on the objective function matters. This is the essence of the envelope theorem. The enve-
lope theorem says that only the direct effects of a change in an exogenous variable need be
considered, even though the exogenous variable may also enter the maximum-value func-
tion indirectly as part of the solution to the endogenous choice variables.

The Profit Function
Let us now apply the notion of the maximum-value function to derive the profit function of
a competitive firm. Consider the case where a firm uses two inputs: capital K and labor L.
The profit function is

π = P f (K , L) − wL − r K (13.32)

where P is the output price and w and r are the wage rate and rental rate, respectively.
The first-order conditions are

πL = P fL (K , L) − w = 0

πK = P fK (K , L) − r = 0
(13.33)

which respectively define the input-demand equations

L∗ = L∗(w, r, P)

K ∗ = K ∗(w, r, P)
(13.34)

Substituting the solutions K ∗ and L∗ into the objective function gives us

π∗(w, r, P) = P f (K ∗, L∗) − wL∗ − r K ∗ (13.35)

where π∗(w, r, P) is the profit function (an indirect objective function). The profit function
gives the maximum profit as a function of the exogenous variables w, r, and P.

Now consider the effect of a change in w on the firm’s profits. If we differentiate
the original profit function (13.32) with respect to w, holding all other variables constant,
we get

∂π

∂w
= −L (13.36)

However, this result does not take into account the profit-maximizing firm’s ability to make
a substitution of capital for labor and adjust the level of output in accordance with profit-
maximizing behavior.
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In contrast, since π∗(w, r, P) is the maximum value of profits for any values of w, r, and
P, changes in π∗ from a change in w takes all capital-for-labor substitutions into account.
To evaluate a change in the maximum profit function caused by a change in w, we differ-
entiate π∗(w, r, P) with respect to w to obtain

∂π∗

∂w
= ( P fL − w)

∂L∗

∂w
+ ( P fK − r)

∂K ∗

∂w
− L∗ (13.37)

From the first-order conditions (13.33), the two terms in parentheses are equal to zero.
Therefore, the equation becomes

∂π∗

∂w
= −L∗(w, r, P) (13.38)

This result says that, at the profit-maximizing position, a change in profits with respect to a
change in the wage rate is the same whether or not the factors are held constant or allowed
to vary as the factor price changes. In this case, (13.38) shows that the derivative of the
profit function with respect to w is the negative of the factor demand function L∗(w, r, P).
Following the preceding procedure, we can also show the additional comparative-static
results:

∂π∗(w, r, P)

∂r
= −K ∗(w, r, P) (13.39)

and
∂π∗(w, r, P)

∂ P
= f (K ∗, L∗) (13.40)

Equations (13.38), (13.39), and (13.40) are collectively known as Hotelling’s lemma. We
have obtained these comparative-static derivatives from the profit function by allowing K ∗

and L∗ to adjust to any parameter change. But it is easy to see that the same results will
emerge if we differentiate the profit function (13.35) with respect to each parameter while
holding K ∗ and L∗ constant. Thus Hotelling’s lemma is simply another manifestation of the
envelope theorem that we encountered earlier in (13.31′).

Reciprocity Condition
Consider again our two-variable unconstrained maximization problem

Maximize U = f (x , y, φ) [from (13.27)]

where x and y are the choice variables and φ is a parameter. The first-order conditions are
fx = fy = 0, which imply x∗ = x∗(φ) and y∗ = y∗(φ).

We are interested in the comparative statics regarding the directions of change in x∗(φ) and
y∗(φ) as φ changes and the effects on the value function. The maximum-value function is

V (φ) = f (x∗(φ), y∗(φ), φ) (13.41)

By definition, V (φ) gives the maximum value of f for any given φ.
Now consider a new function that depicts the difference between the actual value and the

maximum value of U:

�(x , y, φ) = f (x , y, φ) − V (φ) (13.42)

This new function � has a maximum value of zero when x = x∗ and y = y∗; for any
x �= x∗, y �= y∗ we have f ≤ V. In this framework �(x , y, φ) can be considered a function
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of three independent variables, x, y, and φ . The maximum of �(x , y, φ) = f (x , y, φ) −
V (φ) can be determined by the first- and second-order conditions.

The first-order conditions are

�x (x , y, φ) = fx = 0

�y(x , y, φ) = fy = 0
(13.43)

and �φ(x , y, φ) = fφ − Vφ = 0 (13.44)

We can see that the first-order conditions of our new function � in (13.43) are nothing but
the original maximum conditions for f (x , y, φ) in (13.28), whereas the condition in
(13.44) really restates the envelope theorem (13.31′). These first-order conditions hold
whenever x = x∗(φ) and y = y∗(φ). The second-order sufficient conditions are satisfied if
the Hessian of �

H =
∣∣∣∣∣∣

fxx fxy fxφ

fyx fyy fyφ

fφx fφy fφφ − Vφφ

∣∣∣∣∣∣
is characterized by

fxx < 0 fxx fyy − f 2
xy > 0 H < 0

In deriving the Hessian above, we listed the variables in the order (x , y, φ) and, conse-
quently, the first entry in the second-order conditions, (�xx =) fxx < 0 relates to the vari-
able x. Had we adopted an alternative listing order, then the first entry could have been
�yy = fyy < 0, or

�φφ = fφφ − Vφφ < 0 (13.45)

It turns out that (13.45) can lead us to a result that provides a quick way to reach a
comparative-static conclusion. First, we know from (13.41) that

Vφ(φ) = fφ(x∗(φ), y∗(φ), φ)

Differentiating both sides with respect to φ yields

Vφφ = fφx
∂x∗

∂φ
+ fφy

∂y∗

∂φ
+ fφφ (13.46)

Using (13.45) and Young’s theorem, we can write

Vφφ − fφφ = fxφ

∂x∗

∂φ
+ fyφ

∂y∗

∂φ
> 0 (13.47)

Suppose that φ enters only in the first-order condition for x, such that fyφ = 0. Then
(13.47) reduces to

fxφ

∂x∗

∂φ
> 0 (13.48)

which implies that fxφ and ∂x∗/∂φ will have the same sign. Thus, whenever we see the
parameter φ appearing only in the first-order condition relating to x, and once we have
determined the sign of the derivative fxφ from the objective function U = f (x , y, φ),
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we can immediately tell the sign of the comparative-static derivative ∂x∗/∂φ without
further ado.

For example, in the profit-maximization model:

π = P f (K , L) − wL − r K

where the first-order conditions are

πL = P fL − w = 0

πK = P fK − r = 0

the exogenous variable w enters only the first-order condition P fL − w = 0, with

∂πL

∂w
= −1

Therefore, by (13.48), we can conclude that ∂L∗/∂w will also be negative.
Further, if we combine the envelope theorem with Young’s theorem, we can derive a re-

lation known as the reciprocity condition: ∂L∗/∂r = ∂K ∗/∂w. From the indirect profit
function π∗(w, r, P), Hotelling’s lemma gives us

π∗
w = ∂π∗

∂w
= −L∗(w, r, P)

π∗
r = ∂π∗

∂r
= −K ∗(w, r, P)

Differentiating again and applying Young’ theorem, we have

π∗
wr = −∂L∗

∂r
= −∂K ∗

∂w
= π∗

rw

or
∂L∗

∂r
= ∂K ∗

∂w
(13.49)

This result is referred to as the reciprocity condition because it shows the symmetry
between the comparative-static cross effect produced by the price of one input on the
demand for the “other” input. Specifically, in the comparative-static sense, the effect of r
(the rental rate for capital K) on the optimal demand for labor L is the same as the effect of
w (the wage rate for labor L) on the optimal demand for capital K.

The Envelope Theorem for Constrained Optimization
The envelope theorem can also be derived for the case of constrained optimization. Again
we will have an objective function (U ), two choice variables (x and y) and one parameter
(φ); except now we introduce the following constraint:

g(x , y;φ) = 0

The problem becomes:

Maximize U = f (x , y;φ)

subject to g(x , y;φ) = 0
(13.50)

The Lagrangian for this problem is

Z = f (x , y;φ) + λ[0 − g(x , y;φ)] (13.51)
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with first-order conditions

Zx = fx − λgx = 0

Zy = fy − λgy = 0

Zλ = −g(x , y;φ) = 0

Solving this system of equations gives us

x = x∗(φ) y = y∗(φ) λ = λ∗(φ)

Substituting the solutions into the objective function, we get

U ∗ = f (x∗(φ), y∗(φ), φ) = V (φ) (13.52)

where V (φ) is the indirect objective function, a maximum-value function. This is the max-
imum value of y for any φ and xi ’s that satisfy the constraint.

How does V (φ) change as φ changes? First, we differentiate V with respect to φ:

dV

dφ
= fx

∂x∗

∂φ
+ fy

∂y∗

∂φ
+ fφ (13.53)

In this case, however, (13.53) will not simplify to dV /dφ = fφ since in constrained opti-
mization, it is not necessary to have fx = fy = 0 (see Table 12.1). But if we substitute the
solutions to x and y into the constraint (producing an identity), we get

g(x∗(φ), y∗(φ), φ) ≡ 0

and differentiating this with respect to φ yields

gx
∂x∗

∂φ
+ gy

∂y∗

∂φ
+ gφ ≡ 0 (13.54)

If we multiply (13.54) by λ, combine the result with (13.53), and rearrange terms, we get

dV

dφ
= ( fx − λgx )

∂x∗

∂φ
+ ( fy − λgy)

∂y∗

∂φ
+ fφ − λgφ = Zφ (13.55)

where Zφ is the partial derivative of the Lagrangian function with respect to φ, holding all
other variables constant. This result is in the same spirit as (13.31), and by virtue of the
first-order conditions, it reduces to

dV

dφ
= Zφ (13.55’)

which represents the envelope theorem in the framework of constrained optimization. Note,
however, in the present case, the Lagrangian function replaces the objective function in de-
riving the indirect objective function.

While the results in (13.55) nicely parallel the unconstrained case, it is important to note
that some of the comparative-static results depend critically on whether the parameters
enter only the objective function, or only the constraints, or enter both. If a parameter en-
ters only in the objective function, then the comparative-static results are the same as for
the unconstrained case. However, if the parameter enters the constraint, the relation

Vφφ ≥ fφφ

will no longer hold.
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Interpretation of the Lagrange Multiplier
In the consumer choice problem in Chap. 12 we derived the result that the Lagrange multi-
plier λ represented the change in the value of the Lagrange function when the consumer’s
budget changed. We interpreted λ as the marginal utility of income. Now let us derive a
more general interpretation of the Lagrange multiplier with the assistance of the envelope
theorem. Consider the problem

Maximize U = f (x , y)

subject to g(x , y) = c

where c is a constant. The Lagrangian for this problem is

Z = f (x , y) + λ[c − g(x , y)] (13.56)

The first-order conditions are

Zx = fx (x , y) − λgx (x , y) = 0

Zy = fy(x , y) − λgy(x , y) = 0

Zλ = c − g(x , y) = 0

(13.57)

From the first two equations in (13.57), we get

λ = fx

gx
= fy

gy
(13.58)

which gives us the condition that the slope of the level curve (indifference curve) of the
objective function must equal the slope of the constraint at the optimum.

Equations (13.57) implicitly define the solutions

x∗ = x∗(c) y∗ = y∗(c) λ∗ = λ∗(c) (13.59)

Substituting (13.59) back into the Lagrangian yields the maximum-value function,

V (c) = Z∗(c) = f (x∗(c), y∗(c)) + λ∗(c)[c − g(x∗
1 (c), y∗(c))] (13.60)

Differentiating with respect to c yields

dV

dc
= d Z∗

dc
= fx

∂x∗

∂c
+ fy

∂y∗

∂c
+ [c − g(x∗(c), y∗(c))]

∂λ∗

∂c

− λ∗(c)gx
∂x∗

∂c
− λ∗(c)gy

∂y∗

∂c
+ λ∗(c)

dc

dc

By rearranging we get

d Z∗

dc
= [ fx − λ∗gx ]

∂x∗

∂c
+ [ fy − λ∗gy]

∂y∗

∂c
+ [c − g(x∗, y∗)]

∂λ∗

∂c
+ λ∗

By (13.57), the three terms in brackets are all equal to zero. Therefore this expression
simplifies to

dV

dc
= d Z∗

dc
= λ∗ (13.61)

which shows that the optimal value λ∗ measures the rate of change of the maximum
value of the objective function when c changes, and is for this reason referred to as the
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“shadow price” of c. Note that, in this case, c enters the problem only through the
constraint; it is not an argument of the original objective function.

13.6 Duality and the Envelope Theorem
A consumer’s expenditure function and his or her indirect utility function exemplify the
minimum- and maximum-value functions for dual problems.† An expenditure function
specifies the minimum expenditure required to obtain a fixed level of utility given the util-
ity function and the prices of consumption goods. An indirect utility function specifies the
maximum utility that can be obtained given prices, income, and the utility function.

The Primal Problem
Let U (x , y) be a utility function where x and y are consumption goods. The consumer has
a budget B and faces market prices Px and Py for goods x and y, respectively. This problem
will be considered the primal problem:

Maximize U = U (x , y)

subject to Px x + Py y = B
[Primal] (13.62)

For this problem, we have the familiar Lagrangian

Z = U (x , y) + λ(B − Px x − Py y)

The first-order conditions are

Zx = Ux − λPx = 0

Zy = Uy − λPy = 0

Zλ = B − Px x − Py y = 0

(13.63)

This system of equations implicitly defines a solution for xm , ym , and λm as a function of
the exogenous variables B, Px , Py :

xm = xm( Px , Py , B)

ym = ym( Px , Py , B)

λm = λm( Px , Py , B)

The solutions xm and ym are the consumer’s ordinary demand functions, sometimes called
the “Marshallian” demand functions, hence the superscript m.

Substituting the solutions xm and ym into the utility function yields

U ∗ = U ∗(xm( Px , Py , B), ym( Px , Py , B)) ≡ V ( Px , Py , B) (13.64)

where V is the indirect utility function—a maximum-value function showing the maximum
attainable utility in problem (13.62). We shall return to this function later.
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The Dual Problem
Now consider a related dual problem for the consumer with the objective of minimizing the
expenditure on x and y while maintaining a fixed utility level U ∗ derived from (13.64) of
the primal problem:

Minimize E = Px x + Py y

subject to U (x , y) = U ∗ [Dual] (13.65)

Its Lagrangian is

Zd = Px x + Py y + µ [U ∗ − U (x , y)]

and the first-order conditions are

Zd
x = Px − µUx = 0

Zd
y = Py − µUy = 0

Zd
λ = U ∗ − U (x , y) = 0

(13.66)

This system of equations implicitly defines a set of solution values to be labeled xh , yh ,
and λh :

xh = xh( Px , Py , U ∗)

yh = yh( Px , Py , U ∗)

µh = µh( Px , Py , U ∗)

Here xh and yh are the compensated (“real income” held constant) demand functions. They
are commonly referred to as “Hicksian” demand functions, hence the h superscript.

Substituting xh and yh into the objective function of the dual problem yields

Px xh( Px , Py , U ∗) + Py yh( Px , Py , U ∗) ≡ E( Px , Py , U ∗) (13.67)

where E is the expenditure function—a minimum-value function showing the minimum
expenditure needed to attain the utility level U ∗.

Duality
If we take the first two equations in (13.63) and in (13.64), and eliminate the Lagrange
multipliers, we can write

Px

Py
= U x

U y
(13.68)

This is the tangency condition in which the consumer chooses the optimal bundle where the
slope of the indifference curve equals the slope of the budget constraint. The tangency con-
dition is identical for both problems. Thus, when the target level of utility in the minimiza-
tion problem is set equal to the value U ∗ obtained from the maximization problem, we get

xm( Px , Py , B) = xh( Px , Py , U ∗)

ym( Px , Py , B) = yh( Px , Py , U ∗)
(13.69)

i.e., the solutions to both the maximization problem and the minimization problem produce
identical values for x and y. However, the solutions are functions of different exogenous
variables, so comparative-static exercises will generally produce different results.
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The fact that the solution values for x and y in the primal and dual problems are deter-
mined by the tangency point of the same indifference curve and budget-constraint line
means that the minimized expenditure in the dual problem is equal to the given budget B of
the primal problem:

E( Px , Py , U ∗) = B (13.70)

This result is parallel to the result in (13.64), which reveals that the maximized value of util-
ity V in the primal problem is equal to the given target level of utility U ∗ in the dual problem.

While the solution values of x and y are identical in the two problems, the same cannot
be said about the Lagrange multipliers. From the first equation in (13.63) and in (13.66), we
can calculate λ = Ux/Px , but µ = Px/Ux . Thus, the solution values of λ and µ are recip-
rocal to each other:

λ = 1

µ
or λm = 1

µh
(13.71)

Roy’s Identity
One application of the envelope theorem is the derivation of Roy’s identity. Roy’s identity
states that the individual consumer’s Marshallian demand function is equal to negative of
the ratio of two partial derivatives of the maximum-value function.

Substituting the optimal values xm, ym, and λm into the Lagrangian of (13.62) gives us

V ( Px , Py , B) = U (xm , ym) + λm
(
B − Px xm − Py ym

)
(13.72)

When we differentiate (13.72) with respect to Px we find

∂V

∂ Px
= (Ux − λm Px )

∂xm

∂ Px
+ (Uy − λm Py)

∂ym

∂ Px

+ (B − Px xm − Py ym)
∂λm

∂ Px
− λm xm

At the optimum, the first-order conditions (13.63) enable us to simplify this to

∂V

∂ Px
= −λm xm

Next, differentiate the value function with respect to B to get

∂V

∂ B
= (Ux − λm Px )

∂xm

∂ B
+ (Uy − λm Py)

∂ym

∂ B

+ (B − Px xm − Py ym)
∂λm

∂ B
+ λm

Again, at the optimum, (13.63) enables us to simplify this to 

∂V

∂ B
= λm

By taking the ratio of these two partial derivatives, we find that

∂V/∂ Px

∂V/∂ B
= −xm (13.73)

This result, known as Roy’s identity, shows that the Marshallian demand for commodity x
is the negative of the ratio of two partial derivatives of the maximum-value function V with
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respect to Px and B, respectively. In view of the symmetry between x and y in the problem,
a result similar to (13.73) can also be written for ym , the Marshallian demand for y. Of
course, this result could be arrived at directly by applying the envelope theorem.

Shephard’s Lemma
In Sec. 13.5, we derived Hotelling’s lemma, which states that the partial derivatives of
the maximum value of the profit function yields the firm’s input-demand functions and the
supply functions. A similar approach applied to the expenditure function yields Shephard’s
lemma.

Consider the consumer’s minimization problem (13.65). The Lagrangian is

Zd = Px x + Py y + µ[U ∗ − U (x , y)]

From the first-order conditions, the following solutions are implicitly defined

xh = xh( Px , Py , U ∗)

yh = yh( Px , Py , U ∗)

µh = µh( Px , Py , U ∗)

Substituting these solutions into the Lagrangian yields the expenditure function:

E( Px , Py , U ∗) = Px xh + Py yh + µh[U ∗ − U (xh , yh)]

Taking the partial derivatives of this function with respect to Px and Py and evaluating them
at the optimum, we find that ∂ E/∂ Px and ∂ E/∂ Py represent the consumer’s Hicksian
demands:

∂ E

∂ Px
= ( Px − µhUx )

∂xh

∂ Px
+ ( Py − µhUy)

∂yh

∂ Px
+ [U ∗ − U (xh , yh)]

∂µh

∂ Px
+ xh

= (0)
∂xh

∂ Px
+ (0)

∂yh

∂ Px
+ (0)

∂µh

∂ Px
+ xh = xh

(13.74)

and

∂ E

∂ Py
= ( Px − µhUx )

∂xh

∂ Py
+ ( Py − µhUy)

∂yh

∂ Py
+ [U ∗ − U (xh , yh)]

∂µh

∂ Py
+ yh

= (0)
∂xh

∂ Py
+ (0)

∂yh

∂ Py
+ (0)

∂µh

∂ Py
+ yh = yh

(13.74’)

Finally, differentiating E with respect to the constraint U ∗ yields µh, the marginal cost of
the constraint

∂ E

∂U ∗ = ( Px − µhUx )
∂xh

∂U ∗ + ( Py − µhUy)
∂yh

∂ Py

+ [U ∗ − U (xh , yh)]
∂µh

∂U ∗ + µh

= (0)
∂xh

∂U ∗ + (0)
∂yh

∂U ∗ + (0)
∂µh

∂U ∗ + µh = µh (13.74’’)
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Together, the three partial derivatives (13.74), (13.74′), and (13.74′′) are referred to as
Shephard’s lemma.

Consider a consumer with the utility function U = xy, who faces a budget constraint of B
and is given prices Px and Py .

The choice problem is

Maximize U = xy

subject to Px x + Py y = B

The Lagrangian for this problem is

Z = xy + λ(B − Px x − Py y)

The first-order conditions are
Zx = y − λPx = 0

Zy = x − λPy = 0

Zλ = B − Px x − Py y = 0

Solving the first-order conditions yields the following solutions:

xm = B
2Px

y m = B
2Py

λm = B
2Px Py

where xm and y m are the consumer’s Marshallian demand functions. For the second-order
condition, since the bordered Hessian is

| �H | =
∣∣∣∣∣∣

0 1 −Px
1 0 −Py

−Px −Py 0

∣∣∣∣∣∣ = 2Px Py > 0

the solution does represent a maximum.†

We can now derive the indirect utility function for this problem by substituting xm and
y m into the utility function:

V (Px , Py, B ) =
(

B
2Px

)(
B

2Py

)
= B 2

4Px Py
(13.75)

where V denotes the maximized utility. Since V represents the maximized utility, we can set
V = U ∗ in (13.75) to get B 2/4Px Py = U ∗ , and then rearrange terms to express B as

B = (4Px PyU ∗)1/2 = 2P 1/2
x P 1/2

y U ∗1/2

Now, think of the consumer’s dual problem of expenditure minimization. In the dual
problem, the minimum-expenditure function E should be equal to the given budget
amount B of the primal problem. Therefore, we can immediately conclude from the pre-
ceding equation that

E (Px , Py, U ∗) = B = 2P 1/2
x P 1/2

y U ∗1/2 (13.76)

Example 1
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† Note that the bordered Hessian is written here (and in Example 2 on page 440) with the borders in
the third row and column, instead of in the first row and column as in (12.19). This is the result of
listing the Lagrange multiplier as the last rather than the first variable as we did in previous chapters.
Exercise 12.3-3 shows that the two alternative expressions for the bordered Hessian are transformable
into each other by elementary row operations without affecting its value. However, when more than
two choice variables appear in a problem, it is preferable to use the (12.19) format because that
makes it easier to write out the bordered leading principal minors.
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Let’s now use this example to verify Roy’s identity (13.73)

xm = −∂V/∂ Px

∂V/∂ B

Taking the relevant partial derivatives of V, we find

∂V

∂ Px
= − B2

4P2
x Py

and
∂V

∂ B
= B

2Px Py

The negative of the ratio of these two partials is

−
∂V

∂ Px

∂V

∂ B

= −

(
B2

4P2
x Py

)
(

B

2Px Py

) = B

2Px
= xm

Thus we find that Roy’s identity does hold.

Now consider the dual problem of cost minimization given a fixed level of utility related to
Example 1. Letting U ∗ denote the target level of utility, the problem is:

Minimize Px x + Py y

subject to xy = U ∗

The Lagrangian for the problem is

Zd = Px x + Py y + µ(U ∗ − xy)

The first-order conditions are

Zd
x = Px − µy = 0

Zd
y = Py − µx = 0

Zd
µ = U ∗ − xy = 0

Solving the system of equations for x, y, and µ, we get

xh =
(

PyU ∗

Px

) 1
2

y h =
(

PxU ∗

Py

) 1
2

µh =
(

Px Py

U ∗

) 1
2

(13.77)

where xh and y h are the consumer’s compensated (Hicksian) demand functions. Checking
the second-order condition for a minimum, we find

| �H | =
∣∣∣∣∣∣

0 −µ −y
−µ 0 −x
−y −x 0

∣∣∣∣∣∣ = −2xyµ < 0

Thus the sufficient condition for a minimum is satisfied.

Example 2

440 Part Four Optimization Problems

chi09109_ch13.qxd  12/20/04  5:40 PM  Page 440



Substituting xh and y h into the original objective function gives us the minimum-value
function, or expenditure function

E = Px xh + Py y h = Px

(
PyU ∗

Px

)1/2

+ Py

(
PxU ∗

Py

)1/2

= (Px PyU ∗)1/2 + (Px PyU ∗)1/2

= 2P 1/2
x P 1/2

y U ∗1/2 (13.76’)

Note that this result is identical with (13.76) in Example 1. The only difference lies in the
process used to derive the result. Equation (13.76′) is obtained directly from an expenditure-
minimization problem, whereas (13.76) is indirectly deduced, via the duality relationship,
from a utility-maximization problem.

We shall now use this example to test the validity of Shephard’s lemma (13.74), (13.74′),
and (13.74′′). Differentiating the expenditure function in (13.76′) with respect to Px , Py ,
and U ∗, respectively, and relating the resulting partial derivatives to (13.77), we find

∂ E (Px , Py, U ∗)
∂ Px

= P 1/2
y U ∗1/2

P 1/2
x

= xh

∂ E (Px , Py, U ∗)
∂ Py

= P 1/2
x U ∗1/2

P 1/2
y

= y h

∂ E (Px , Py, U ∗)
∂U ∗ = P 1/2

x P 1/2
y

U ∗1/2 = µh

Thus, Shephard’s Lemma holds in this example.

EXERCISE 13.6

1. A consumer has the following utility function: U (x, y) = x(y + 1), where x and y are
quantities of two consumption goods whose prices are Px and Py , respectively. The
consumer also has a budget of B. Therefore, the consumer’s Lagrangian is

x(y + 1) + λ(B − Px x − Py y)

(a) From the first-order conditions find expressions for the demand functions. What
kind of good is y? In particular what happens when Py > B ?

(b) Verify that this is a maximum by checking the second-order conditions. By substi-
tuting x∗ and y ∗ into the utility function, find an expression for the indirect utility
function

U ∗ = U (Px , Py, B )

and derive an expression for the expenditure function

E = E (Px , Py, U ∗)

(c) This problem could be recast as the following dual problem

Minimize Px x + Py y

subject to x(y + 1) = U ∗

Find the values of x and y that solve this minimization problem and show that the
values of x and y are equal to the partial derivatives of the expenditure function,
∂ E /∂ Px and ∂ E /∂ Py , respectively.
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13.7 Some Concluding Remarks
In the present part of the book, we have covered the basic techniques of optimization. The
somewhat arduous journey has taken us (1) from the case of a single choice variable to the
more general n-variable case, (2) from the polynomial objective function to the exponential
and logarithmic, and (3) from the unconstrained to the constrained variety of extremum.

Most of this discussion consists of the “classical” methods of optimization, with differ-
ential calculus as the mainstay, and derivatives of various orders as the primary tools. One
weakness of the calculus approach to optimization is its essentially myopic nature. While
the first- and second-order conditions in terms of derivatives or differentials can normally
locate relative or local extrema without difficulty, additional information or further investi-
gation is often required for identification of absolute or global extrema. Our detailed dis-
cussion of concavity, convexity, quasiconcavity, and quasiconvexity is intended as a useful
stepping-stone from the realm of relative extrema to that of absolute ones.

A more serious limitation of the calculus approach is its inability to cope with con-
straints in the inequality form. For this reason, the budget constraint in the utility-
maximization model, for instance, is stated in the form that the total expenditure be exactly
equal to (and not “less than or equal to”) a specified sum. In other words, the limitation of
the calculus approach makes it necessary to deny the consumer the option of saving part of
the available funds. And, for the same reason, the classical approach does not allow us to
specify explicitly that the choice variables must be nonnegative as is appropriate in most
economic analysis.

Fortunately, we are liberated from these limitations when we introduce the modern
optimization technique known as nonlinear programming. Here we can openly admit in-
equality constraints, including nonnegativity restrictions on the choice variables, into the
problem. This obviously represents a giant step forward in the development of optimization
methodology.

Still, even in nonlinear programming, the analytical framework remains static. The
problem and its solution relate only to the optimal state at one point of time and cannot ad-
dress the question of how an optimizing agent should, under given circumstances, behave
over a period of time. The latter question pertains to the realm of dynamic optimization,
which we are unable to handle until we have learned the basics of dynamic analysis—the
analysis of movements of variables over time. In fact, aside from its application to dynamic
optimization, dynamic analysis is, in itself, an important branch of economic analysis. For
this reason, we shall now turn our attention to the subject of dynamic analysis in Part 5.
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