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10.14 Simulated Annealing

Annealing allows systems of
magnets or atoms in alloys to
search low energy configura-
tions. It involves heating the
solid in question to high tem-
peratures whereby random con-
figurations are explored. This
is followed by gradually reduc-
ing the temperature of the sys-
tem towards zero. This allows
the system to relax into a low
energy configuration because
even at moderately high tem-
peratures the system favours
regions in configuration space
that have a lower energy. These
regions are thus more likely
to contain the global minimum.
Consequently, as the tempera-
tures are lowered the system
has a high probability of search-
ing the optimal configuration.

When we address the design of high dimensional and complex pattern
classifiers we find that analytical methods or even techniques that use local
derivatives for gradient descent turnout to be inadequate.Weknow that error
surfaces of non-linear systems in high dimensional spaces have multiple
minima, and finding the true global minimum is indeed a difficult task.
Exhaustive search in solution space to find a good set of parameters is
almost impossible to use due to the sheer number of possibilities that arise in
real world problems. In addition, an issue that accompanies the increasing
complexity of the problem is that we usually have less training data and
less prior knowledge [136]. Sophisticated search techniques need to be
adopted in order to find acceptable solutions. In this section we discuss
a stochastic search method calledsimulated annealingthat affords one
possible approach to solve this problem. Our discussion will eventually
lead us to the formulation of the Boltzmann machine, a neural network
model that employs stochastic methods in its operation. Other stochastic
techniques such as genetic algorithms shall be discussed in Chapter 15.

Simulated annealing provides a general framework for the optimization
of the behaviour of complex systems. It operates by introducing noise in
a controllable fashion into the operational dynamics of the system, for
robust iterative search. In the treatment that follows, we refer to a specific
combination of neuron states as aconfigurationof the network. Different
configurationsof the network—each being nothing but a particular instance
of a signal vector—are indexed byγ . Clearly, in ann-node network there are
at most 2n configurations. The basic idea underlying simulated annealing
is to generate different configurations of the system at various values of a
control parameter called thetemperature, and to gradually reduce the value
of this parameter to search for an optimal orground statesolution to the
problem. The simplest way to generate multiple configurations of a system
at an energyE and temperatureT is to use the Metropolis algorithm [386].

10.14.1 An Important Result from Statistical Mechanics

In general, the low energy configurations will be very few. We know that
these will be precisely those corresponding to the vectors that are encoded
into the network and other spurious memories. However, there are many
more possible configurations that correspond to higher energies. In fact,
the number of possible configurations increases exponentially with an
increase in energy. From statistical mechanics we know that a system is
in thermal equilibrium when a configurationγ with energyEγ occurs with
a probability:

P (γ ) is an increasing function
of e−Eγ /T , and therefore de-
creases as Eγ increases.

P (γ ) = e−Eγ /T∑
γ ′ e

−Eγ ′/T
= e−Eγ /T

Z(T )
(10.1)
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where the various possible configurations are indexed byγ ′. P (γ ) is
referred to as theBoltzmann Probability Distribution. In Eq. 10.1,Z(T )
is called thepartition function which plays the role of a normalizing
constant. The numerator of Eq. 10.1 is called theBoltzmann factor, and for
physical systems there is a Boltzmann constantkB (= 1.38× 10−23 J/K),
that converts temperature to an energy in the expression. In the present
treatment we can safely ignore this constant by assuming that we will be
working with scaled temperatures in our simulations.T then represents a
scaled temperature which includes the Boltzmann constant.

10.14.2 Understanding the Procedure

Our discussion on simulated annealing will be in the context of neural
networks, although it is worth pointing out that it is an optimization
technique that can be applied to a wide variety of real world problems.

At present, we return to the classic quadratic energy optimization
problem.To remain on familiar ground,wewill consider aHopfield network
architecture with a set of given connectionswij , and bipolar signal states
s
γ

i ∈ {−1, +1}, (1≤ i ≤ n). Then, we are required to find values ofs
γ

i , s
γ

j

that minimize the Lyapunov energy:

Hopfield network showing a few
connections for neuron 2.

Eγ = −1

2

n∑
i=1

n∑
j=1

wij s
γ

i s
γ

j (10.2)

wherewij = wji , andwii = 0. Note that the energy has been specifically
indexed by the configurationγ . Each configuration will have its own energy
that depends upon the signal states.

The simulated annealing method for finding an optimal configuration
of neuron states given a set of weights is based on the physical annealing
metaphor. It involves the following basic steps:

Randomize neuron states once in the beginning, and initialize the
temperature to a high value.

The occasional acceptance of a
higher energy state allows the
algorithm to escape from local
minima and explore other po-
tential regions in the solution
space. To implement the state
transition from a lower energy
state to a higher energy state,
we simply have to compare the
value of e−�E(I )/T with a random
number generated between 0
and 1. If the number generated
is less than e−�E(I )/T , then ac-
cept the transition; else reject
the transition.

Choose a neuronI randomly from the network.
Compute the energyEA of the present configurationA.
Flip the state of neuronI to generate a new configurationB.
Compute the energyEB of configurationB.
If EB < EA then accept the state change for neuronI . Otherwise
accept the state change for neuronI with a probabilitye−�E(I )/T

where�E(I ) = EB − EA.
Continue selecting and testing neurons randomly, and set their states
several times in this way until athermal equilibriumis reached.
Finally, lower the temperature and repeat the procedure.

This procedure continues until the temperature reaches a very small value.
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Note that the algorithm works because at very high temperatures since
e−Eγ /T ≈ 1,P (γ ) ≈ 1

2n . What this really means is that at high temperatures
all configurations are somewhat equally likely. Also, at high temperatures
transitions to energetically unfavourable states are frequent. However, at
lower temperatures transitions to energetically unfavourable states become
less frequent and thesearchbecomesmore like theusual descent procedures.
Finally, if the cooling is sufficiently slow, the network has a very high
probability of finding itself in an optimal configuration that represents a
minimum energy configuration.

Froman implementation point of view, note that the transition probability
is dependent on�E(I ). Therefore only those neurons need to be considered
which are directly connected to the neuronI under consideration. The
change in energy�E(I ) which occurs when neuronI flips its state fromsI

to−sI is:

Here we have used the ex-
pression for energy comprising
terms related to neuron I only
(see Eq. 10.42).

�E(I ) = −(−sI )
n∑

j=1

wIj sj +
(

sI

n∑
j=1

wIj sj

)
(10.3)

= 2sI

n∑
j=1

wIj sj (10.4)

= 2sI

n∑
j=1

wjI sj (10.5)

= 2sI xI (10.6)

where we have used the weight symmetry conditionwjI = wIj . Then the
simulated annealing procedure outlined above canbe recast into algorithmic
form as shown in Table 10.1.

Note that although we have dis-
cussed the simulated anneal-
ing optimization algorithm in the
context of the Hopfield network,
it is a general technique that
can be used to optimize any
non-linear cost functions.

A critical aspect of the algorithm is the choice of initial temperature and
theannealing schedule. A typical choice of the annealing schedule is

Tk+1 = cTk (10.7)

where 0< c < 1. A typical working range ofc is 0.8 < c < 0.9 which is
found to work well for real world problems. The initial temperature should
be chosen high and the maximum iteration indexkmax as large as possible.

It should be straightforward to write theMATLAB code segment for
the stochastic simulated annealing algorithm of Table 10.1 (see Review
Question 10.17).

10.14.3 Energy Optimization of Hopfield CAM

Much intuition into the working of the algorithm is to be gained from the
interesting simulation example that follows.

In this example we encode two vectors into a six dimensional Hop-
field network using bipolar outer product encoding. The vectors are:
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Table 10.1 Stochastic simulated annealing algorithm applied to a
Hopfield network

Given A set of binary vectors{Ai}Qi=1 to be encoded into a
Hopfield CAM using bipolar encoding.

Encode �W = ∑Q
k=1 XkX

T
k − QI

Initialize � T0, k = 0, kmax (temperature, iteration, iteration limit)
S0, c (signal vector, temperature contraction)

Iterate �Repeat
{
�Repeat
{
� Select neuronI randomly.
� Compute:�E(I ) = 2sI

∑n
j=1 wjI sj

� if �E(I ) < 0, sI = −sI

else ife−�E(I )/Tk > rand [0,1),sI = −sI

} until(all nodes are polled several times)
� Reduce temperature:Tk+1 = cTk

} until (k = kmax or stopping criterion met)

A1 = (110001) andA2 = (101010). The resultant weight matrix is:

W =




0 0 0 −2 0 0
0 0 −2 0 −2 2
0 −2 0 0 2 −2

−2 0 0 0 0 0
0 −2 2 0 0 −2
0 2 −2 0 −2 0




(10.8)

The first thing we do is to calculate the probabilities of the system being
in different configurations at a particular temperature. This is done in
accordance with Eq. 10.1. Figure 10.1 portrays these configuration-wise
probability plots at various temperatures.

In Fig. 10.21, the horizontal axis plots the configuration number from0 to
63—for six bits we have 64 combinations. So we start with zero and go to
63. Energies for each of these configurations are plotted in Fig. 10.1(e).
Note that the lowest energy corresponds to the encoded associations
A1, A2, and their complementsA′

1, A
′
2: EA1 = EA2 = EA′

1
= EA′

2
= −20.

In Figs 10.1(a)–(d) the probabilities are plotted for temperatures 10, 5, 1,
and 0.1. As is to be expected, at higher temperatures, the probability of the
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Fig. 10.21 Probability estimates for different configurations at four
temperatures.
Note: (a)T = 10 (b)T = 5 (c)T = 1 (d)T = 0.1. (e) Staircase plot of
the energy levels of different attractors or configurations of the network.
The maximum energy is 0 and the minimum energy is –20

system being in a particular state is almost the same for all states. However,
as the temperature is reduced, the probability of the system being in lower
energy states increases. AtT = 0.1 the probability gets roughly divided
between the four lowest energy states, while that of other 60 states is almost
negligible. In our case, these four states are the two memories and their two
spurious complements that were encoded into the weight matrix.

Okay, now let us do the annealing. We start with a temperatureT = 5,
and use the contractionTk+1 = 0.99Tk. Figure 10.2(a) plots the annealing
schedule, while Fig. 10.2(b) shows the energy transitions as the system
moves from state to state during the annealing cycles. Notice from
Fig. 10.2(b) that at higher temperatures, there are very many transitions
that take place from lower to higher energy. This is what lends simulated
annealing its search power. As the temperature is gradually lowered, the
system begins to settle into lower energy states until it finally settles down
intooneof the four attractorswhichhave the lowest energyof−20.Note that
the system might settle into any one of the four−20 energy configurations
in this case. In fact, as predicted by Fig. 10.1(e), the system has an equal
probability of finding itself in one of the lowest energy states. However,



10.14 Samples November 17, 2004 13:6

6 Neural Networks: A Classroom Approach

which one it settles to cannot be predicted in advance since the search is
stochastic.

Fig. 10.22 A plot of the energy transitions made by the system during the
annealing process.
Note: As the temperature is lowered, the number of transitions to higher
energy states becomes more infrequent


