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15.715.7
Integration Example: Subsethood-Product Based
Fuzzy–Neural Inference System

A number of earlier variants
of the SuPFuNIS model with
applications in function approx-
imation, inference and classi-
fication have been presented
elsewhere [444, 447, 448]. In
[448] a combination of weighted
subsethood and soft-minimum
conjunction operator was em-
ployed. The model used a tri-
angular approximation instead
of Gaussian fuzzy weights for
subsethood computation. It ad-
dressed the applications of
function approximation and in-
ference. In [444], which ex-
tended [448] by increasing the
number of free parameters, a
simple heuristic to derive the
number of rules using cluster-
ing was introduced. A combi-
nation of mutual subsethood
and product conjunction oper-
ator with a non-tunable feature
fuzzifier has been presented in
[447]. The network in [447] uses
Gaussian fuzzy weights and tar-
gets the classification problem
domain.

15.7.1 Description of the Model

The Subsethood Product Fuzzy–Neural Inference System (SuPFuNIS)
[445–447] uses a standard fuzzy–neural network architecture that embeds
fuzzy if–then rules into a network architecture. In fig. 15.5 portrays this
architecture. Figure 15.5, input nodes denote features, output nodes denote
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Fig. 15.5 Architecture of the SuPFuNIS model [446].
(©2002 IEEE. Reprinted with permission)

classes, and each hidden node represents a rule. Fuzzy rule antecedents
translate to input-hidden node connections, and fuzzy rule consequents
translate to hidden-output node connections. Fuzzy sets corresponding to
linguistic labels of these fuzzyif–thenrules are represented by symmetric
Gaussian membership functions, identified by a center and spread. There-
fore a fuzzy weightwij from input nodei to rule nodej is modelled by
the centerwc

ij and spreadwσ
ij of a Gaussian fuzzy set:wij = (wc

ij , w
σ
ij ).

Similarly, the consequent fuzzy weight from a rule nodej to output nodek
is denoted byvij = (vc

ij , v
σ
ij ).

The novelty of this model lies in its simultaneous admission of numeric
as well as fuzzy inputs. Numeric inputs are first fuzzified so that all inputs
to the network are uniformly fuzzy. Since the antecedent weights are also
fuzzy, in SuPFuNIS signal transmission along the fuzzy weight is based on
a mutual subsethood measure.
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Signal Transmission at Input Nodes

An input featurexi can be either numeric or linguistic, and therefore there
are two kinds of nodes in the input layer (see Fig. 15.5). A linguistic node
accepts an input in the form of a fuzzy set with a Gaussian membership
function defined by a centerxc

i and spreadxσ
i . The signal transmitted out

of a linguistic node is of the formsi = (xc
i , x

σ
i ) since no transformation of

inputs takes place at these nodes.
Numeric nodes are feature-specific fuzzifiers. A numeric node accepts a

numeric inputxi and fuzzifies it into a fuzzy set by treatingxi as the center
of a Gaussian membership function with a spreadxσ

i . Once again the node
transmits a signal of the formsi = (xc

i , x
σ
i ). Fuzzy signals are transmitted

to hidden rule nodes through fuzzy weightswij .

Mutual Subsethood Based Signal Transmission

Since both the signal and the weight are fuzzy sets, being represented by
Gaussian membership functions, the net value of the signal transmitted
along the weight is quantified by the extent of overlap between the two
fuzzy sets. This is measured by theirmutual subsethoodwhich is defined
for two fuzzy setsA, B as

E(A,B) = C(A ∩ B)

C(A) + C(B) − C(A ∩ B)
(15.1)

whereC(·) is the fuzzy set cardinality. The mutual subsethood measure can
have values in the interval (0,1], and depends upon the relative values of
centers and spreads of fuzzy sets.

The cardinality of a
fuzzy set A is defined as
C(A) = ∫∞

−∞ e−((x−c)/σ )2dx.
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Fig. 15.6 Fuzzy signal transmission in SuPFuNIS (modified from [446])

As shown in Fig. 15.6, in SuPFuNIS, a fuzzy input signal is transmitted
along a fuzzy weight, and the net contribution of that input to rule node
j is quantified byEij , the mutual subsethood between the fuzzy signal
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si = (xc
i , x

σ
i ) and fuzzy weightwij = (wc

ij , w
σ
ij ):

Eij = E(si, wij )

= C(si ∩ wij )

C(si) + C(wij ) − C(si ∩ wij )
(15.2)

Various different cases of overlap can arise. As an example, consider the
case whenxc

i = wc
ij . If xσ

i < wσ
ij then the signal fuzzy setsi completely

belongs to the weight fuzzy setwij and the cardinalityC(si ∩ wij ) = C(si).
This can be evaluated as follows:

C(si ∩ wij )= C(si) =
∫ ∞

−∞
e−(x−xc

i /x
σ
i )

2
dx

= xσ
i

√
π (15.3)

Similarly, C(si ∩ wij ) = C(wij ) if xσ
i > wσ

ij andC(si ∩ wij ) = wσ
ij

√
π . If

xσ
i = wσ

ij , the two fuzzy sets are identical. In summary, forxc
i = wc

ij ,

C(si ∩ wij ) =



C(si) = xσ

i

√
π if xσ

i < wσ
ij

C(wij ) = wσ
ij

√
π if xσ

i > wσ
ij

C(si) = C(wij ) = xσ
i

√
π = wσ

ij

√
π if xσ

i = wσ
ij

(15.4)
Details of other cases are given in [446]. The corresponding expressions for
E(si, wij ) are obtained by substituting forC(si ∩ wij ) into Eq. 15.2.

Activity Aggregation at Rule Nodes

By measuring the value of mutual subsethoodEij for a rule nodej we are
in essence assessing the compatibility between the signalsi and the fuzzy
weightwij . Each rule node is expected to somehow aggregate the vector
Ej = (E1j , . . . , Enj ) in such a way that the resulting node activation reflects
theextent towhich that rule fires. Theactivationzj , of rule nodej is amutual
subsethood based product:

zj =
n∏

i=1

Eij =
n∏

i=1

E(si, wij ) (15.5)

No other transformation ofzj occurs at a rule node and this numeric
activation value is transmitted unchanged to consequent connections.

Output Layer Signal Computation

The signal of each output node is determined using standard volume
based centroid defuzzification [325]. Since the area of consequent weights
(represented by Gaussian fuzzy sets) isvσ

jk

√
π , then,

yk =
∑q

j=1 zjv
c
jkv

σ
jk∑q

j=1 zjv
σ
jk

(15.6)

which is the numeric output obtained. The defuzzifier (Eq. 15.6) essentially
computes a convex sum of consequent set centers. This completes our
discussion on how input vectors are mapped to outputs in SuPFuNIS.
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Supervised Learning

The SuPFuNIS is trained using standard gradient descent learning. This
involves repeated presentation of a set of input patterns drawn from the
training set. The output of the network is compared with the desired value
to obtain the error, and network weights are changed on the basis of a square
errorminimization criterion. Once the network is trained to the desired level
of error, it is tested by presenting a new set of input patterns drawn from the
test set. The squared errorEk used as a training performance parameter is:

Ek = 1

2

p∑
j=1

(dk
j − yk

j )
2 (15.7)

wheredk
j is the desired value at output nodej on iterationk, and the

error is evaluated over allp outputs for a specific patternk. For a 1-of-C
class classification the desired outputs will be 0 or 1. Both the centers and
spreadswc

ij , v
c
jk, w

σ
ij , v

σ
jk, of antecedent and consequent connections, and

the spreads of the input featuresxσ
i are modified on the basis of iterative

update equations [446].

15.7.2 Application: Truck Backer-upper Control Problem

The SuPFuNIS model finds application in a variety of domains. These in-
clude function and time series approximation; data classification; diagnosis;
and control [446]. Here we describe a control application.

For a validation of this assump-
tion refer to [319].

The suitability of SuPFuNIS for control applications is demonstrated
on the truck backer-upper problem which deals with backing up a truck
to a loading dock. The truck corresponds to the cab part of the truck in
the Nguyen–Widrow [412] neural truck backer-upper system. The truck
position is exactly determined by three state variablesφ, x, andy, whereφ
is facilitated through the angle of the truck with the horizontal,x andy are
the coordinates in the space as depicted in Fig. 15.7. The control of the truck
is facilitated through the steering angleθ . The truck moves backward by a
fixed unit distance every stage. We also assume enough clearance between
the truck and the loading dock such that the coordinatey does not have to
be considered as an input. We design a control system, whose inputs are
φ ∈ [−90o,270o] and x ∈ [0,20], and whose output isθ ∈ [−40o,40o],
such that the final state will be (xf , φf ) = (10,90o).

The following kinematic equations are used to simulate the control
system [581]:

x(t + 1)= x(t) + cos(φ(t) + θ (t)) + sin(θ (t)) sin(φ(t)) (15.8)

y(t + 1)= y(t) + sin(φ(t) + θ (t)) − sin(θ (t)) cos(φ(t)) (15.9)

φ(t + 1)= φ(t) − sin−1

(
2 sin(θ (t))

b

)
(15.10)

whereb is the length of the truck and is assumed as 4 for the present
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Fig. 15.7 Diagram of simulated truck and loading zone [446]
(©2002 IEEE. Reprinted with permission)

simulation.
Asmentionedabove, the trainingdata (adapted from [581]) comprise 238

pairs which are accumulated from 14 sequences of desired (x, φ; θ ) values.
The 14 initial states (x0, φ0) are (1,0), (1,90), (1,270), (7,0), (7,90), (7,180),
(7,270), (13,0), (13,90), (13,180), (13,270), (19,90), (19,180), (19,270).
Three initial states, (x0, φ0) = (3, –30), (10,220), and (13,30) were used to
test the performance of the controller. The number of trainable parameters
for this application is (6r+2) for anr rule SuPFuNIS network.

We used a normalized variant of thedocking error (which essentially
measures the Euclidean distance from the actual final position (φa, xa) to
the desired final position (φf , xf )), as well as thetrajectory error (the ratio
of the actual length of the trajectory to the straight line distance from the
initial point to the loading dock) as performance measures (derived from
[319]):

Normalized Docking Error=
√(

φf − φa

360

)2

+
(

xf − xa

20

)2

(15.11)

Trajectory Error= length of truck trajectory

distance (initial position, desired final position)
(15.12)

The docking errors for three test points for three rules and five rules
are shown in Table 15.3. These results demonstrate that SuPFuNIS is able
to perform very well—with a high docking accuracy—with just 5 rules.
The simulation results are to be compared with Kosko and Kong’s fuzzy
controller for backing up the truck to the dock that used 35 linguistic rules
[319], and the Wang–Mendel controller [581] that used 27 rules which are
either linguistic or a mixture of linguistic and rules obtained from numeric
data. The truck trajectories from three initial states are shown in Fig. 15.8.

TheSuPFuNIS is able to successfully generate lowerror trajectories from
each of the initial test points. In addition in SuPFuNIS one can incorporate
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Table 15.1 Docking errors for numeric data (adapted from [446])

Initial point (x, y, φo) Rules Normalized Trajectory
Docking Error Error

(3,3,–30) 3 0.0087 1.2116

(10,4,220) 3 0.0119 1.2737

(13,3,30) 3 0.0073 1.0540

(3,3,–30) 5 0.0088 1.2106

(10,4,220) 5 0.0120 1.2059

(13,3,30) 5 0.0058 1.0533
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Fig. 15.8 Truck trajectories from three testing points (3,3,−30o),
(10,4,220o), (13,3,30o) (a) using 3 rules and (b) using 5 rules
[446]
(©2002 IEEE. Reprinted with permission)

expert knowledge easily and seamlessly into the network. For more details,
the reader is referred to [446].

15.7.3 Evolvable SuPFuNIS

Genetic Learning
In a real-coded genetic algo-
rithm the basic operation is simi-
lar to the binary GA described in
the text with the difference aris-
ing in the nature of the crossover
and mutation operators.

To overcome the problems commonly encountered with gradient de-
scent algorithms, genetic learning was introduced into the SuPFuNIS
model. The resulting model is called the Evolvable Subsethood-Product
Fuzzy–Neural Inference System (ESuPFuNIS) [564]. The ESuPFuNIS
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employs a real-coded genetic algorithm (RGA) to evolve all the trainable
parameters of the network which includes the input feature spreads, and
the antecedent and consequent fuzzy weights. These correspond to the
variables:xσ

i , wc
ij , v

c
jk, w

σ
ij , v

σ
jk. For an n-q-p network (n in-

put features, q rule (hidden)
nodes and p output nodes)
the total number of evolvable
parameters is (n + 2q(n + p)).
There are n inputs and q rule
nodes which give 2nq parame-
ters. Add to this n input spreads,
one for each feature. On the
consequent side there are 2qp
free parameters. This gives (n +
2q(n + p)).

Genetic Coding

We first describe the coding scheme employed. Figure 15.9 shows this ge-
netic coding scheme for the parameters used in theRGA. Each chromosome
comprises three parts. The first part involves feature spreads associatedwith
the input fuzzifier. The second part involves antecedent fuzzy weights. The

Fig. 15.9 String representation of feature spreads and fuzzy weights for
the RGA

antecedent fuzzy weights of all the connections that fan in to each rule node
are coded contiguously. The third and last part concatenates all consequent
fuzzy weights that fan-in to each of the output nodes.

Genetic Algorithm Operators and Operations

Wementioned earlier that the nature of the operators employed in the RGA
are rather different from those employed in the simple GA.We describe one
set of themhere—those thatwere used for optimization onESuPFuNIS. The
implementation of the RGA in ESuPFuNIS employs specialized selection,
crossover, andmutation operators, as wells as a novel procedure to generate
the new population.

In BLX-α, the value of α de-
termines the two-sided exten-
sion of interval I from which
the crossover gene value is ulti-
mately selected at random.

CrossoverThe blend crossoveroperator (BLX-α) [140] is employed in
ESuPFuNIS for performing the crossover operation. LetC1

j , C
2
j represent

the j th gene of two parent chromosomesC1 and C2 each of string
size s. If Cmax = max(C1

j , C
2
j ), andCmin = min(C1

j , C
2
j ), then we define

I = Cmax− Cmin, j = 1, · · · , s. BLX-α generates a single offspringH =
(h1, · · · , hj , · · · , hs) wherehj is a randomly chosen number from the
interval [Cmin − I · α,Cmax+ I · α].
Mutation The ESuPFuNIS employs anon-uniform mutation(NUM)
operator [388] in its RGA. IfT is the maximum number of generations,
then NUM, when applied to a generationt , mutates a geneCi ∈ [ai, bi ] to
C ′

i as follows: The NUM operator function

'(t, y) = y
(
1− r (1−

t
T
)b
)
is de-

signed to generate perturbation
values on the range [0, y] in
such away that the probability of
the function returning numbers
close to zero increases as the
algorithm steps elapse.

C ′
i =

{
Ci + '(t, bi − Ci) if τ = 0

Ci − '(t, Ci − ai) if τ = 1
(15.13)

Here,τ ∈ {0,1},'(t, y) = y
(
1− r (1−

t
T
)b
)
, r is a randomnumber from the

interval [0,1], andb is a user defined parameter that decides the degree of
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dependency on the number of generations.

Selection The RGA in ESuPFuNIS employs alinear ranking selection
and stochastic universal samplingtechnique. Linear ranking selection
ranks chromosomes according to their fitness values with the best and
worst chromosomes carrying ranks 1 andN respectively, whereN is the
population size. The selection probabilityps(C) of each chromosomeC is
calculated according to its rank as follows:

The selection mechanism es-
sentially determines the diver-
sity of the population, which de-
pends upon the selection pres-
sure. The selection pressure is
the degree to which the se-
lection mechanism favours bet-
ter individuals. In the present
case, the selection pressure in-
creases with a decrease in ηmin. ps(C) = 1

N

(
ηmax− (ηmax− ηmin)

rank(Ci) − 1

N − 1

)
(15.14)

Here,Ci is theith chromosome withi = 1, · · · , N ; ηmin andηmax denote
the expected number of copies for the worst and the best chromosomes
respectively withηmin ∈ [0,1] andηmax = 2− ηmin. Stochastic universal
sampling by simulating a roulette wheel which selects chromosomes for
the next generation based on the selection probabilities.

The values of various RGA parameters employed by ESuPFuNIS were:
N = 100, pc = 0.6, pm = 0.1, α = 0.5, ηmin = 0.5, b = 5. More details
on the implementation algorithm are to be found in [564].

15.7.4 Application: Ripley’s Synthetic Data Classification

The Ripley synthetic data set is available from
markov.stats.ox.ac.uk/pub/PRNN. It comprises two dimensional
patterns belonging to two classes. Each class has a bimodal distribution
generated from equal mixtures of Gaussian distributions with identical
covariance matrices [477]. The class distributions have been chosen to
allow a Bayesian classifier error rate of 8 per cent. The training set consists
of 250 patterns with 125 patterns in each class. The test set consists of
1000 patterns with 500 patterns in each class.

For this classification problem, ESuPFuNIS employed a 2-2-2 architec-
ture. A real coded genetic algorithm was employed to evolve the network
parameters. The fitness function combines the root mean squared error with
the misclassification error as follows:

F =
√√√√ 1

Q

Q∑
k=1

(
1

p

p∑
o=1

(dk
o − yk

o )2

)
+ 1

Q

Q∑
k=1

(ck �= ĉk) (15.15)

whereQ is the number of learning patterns involved;p is the number of
outputs;dk

o andyk
o are the desired and the actualoth outputs of the network

for the kth learning pattern and̂ck and ck are the desired and the actual
classification of thekth learning pattern by the network.

The ESuPFuNIS gives a test error rate of 7.6 per cent, a performance
which is better than that of the Bayes classifier. The class separating
boundary learnt by ESuPFuNIS is shown in Fig. 15.10. The test error rate
of 7.6 per cent of ESuPFuNIS with two rules, marks an improvement over
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Fig. 15.10 Class separating boundary learnt by ESuPFuNIS (7.6 per cent
error) along with the Bayesian (8.0 per cent error) decision
boundary for Ripley’s training data

SuPFuNIS which was able to achieve the same error with 10 rules, both in
terms of classification accuracy and rule economy. It also performs better
than various other models as presented in [564].


