15.7

Samples November 17, 2004 13:10

Integration Example: Subsethood-Product Based

15.7 Fuzzy-Neural Inference System

15.7.1 Description of the Model

The Subsethood Product Fuzzy—Neural Inference System (SuPF
[445-447] uses a standard fuzzy—neural network architecture that en
fuzzy if-thenrules into a network architecture. In fig. 15.5 portrays t
architecture. Figure 15.5, input nodes denote features, output nodes ¢

Input layer Rule layer Output layer
" O
Linguistic
nodes Xj
Xm
Xm + 1
Numeric
nodes
Xn

Antecedent weights Consequent weights

A number of earlier variants
Jle SuPFuNIS model with

ations in function approx-
ﬁﬁ Gh, inference and classi-
hiSation have been presented
leletbere [444, 447, 448]. In
[448] a combination of weighted
subsethood and soft-minimum
conjunction operator was em-
ployed. The model used a tri-
angular approximation instead
of Gaussian fuzzy weights for
subsethood computation. It ad-
dressed the applications of
function approximation and in-
ference. In [444], which ex-
tended [448] by increasing the
number of free parameters, a
simple heuristic to derive the
number of rules using cluster-
ing was introduced. A combi-
nation of mutual subsethood
and product conjunction oper-
ator with a non-tunable feature
fuzzifier has been presented in
[447]. The network in [447] uses
Gaussian fuzzy weights and tar-
gets the classification problem

Fig. 15.5 Architecture of the SUPFUNIS model [446].
(©2002 IEEE. Reprinted with permission)

domain.

classes, and each hidden node represents a rule. Fuzzy rule antecedents

translate to input-hidden node connections, and fuzzy rule conseq
translate to hidden-output node connections. Fuzzy sets correspond

uents
ing to

linguistic labels of these fuzzy-thenrules are represented by symmetric
Gaussian membership functions, identified by a center and spread. There-

fore a fuzzy weightw;; from input nodei to rule node;j is modelled by
the centerw;; and spreadv;; of a Gaussian fuzzy setv;; = (wf;, wy).
Similarly, the consequent fuzzy weight from a rule ngde output nodé
is denoted by;; = (vf;, vf)).

The novelty of this model lies in its simultaneous admission of num

eric

as well as fuzzy inputs. Numeric inputs are first fuzzified so that all inputs

to the network are uniformly fuzzy. Since the antecedent weights are

also

fuzzy, in SUPFuUNIS signal transmission along the fuzzy weight is based on

a mutual subsethood measure.

15.7

Samples

November 17, 2004

13:10

Neural Networks: A Classroom Approach

The

c(A) =

I%

cardinality of

(=)o) g

i
Fuzzy or numeric input N
y p antecedent rule nodeconsequen/'output node

Signal Transmission at Input Nodes

An input featurex; can be either numeric or linguistic, and therefore there
are two kinds of nodes in the input layer (see Fig. 15.5). A linguistic node
accepts an input in the form of a fuzzy set with a Gaussian membership
function defined by a centet” and spready?. The signal transmitted out
of a linguistic node is of the formy = (x{, x{) since no transformation of
inputs takes place at these nodes.

Numeric nodes are feature-specific fuzzifiers. A numeric node accepts a
numeric inputx; and fuzzifies it into a fuzzy set by treatingas the center
of a Gaussian membership function with a spreadOnce again the node
transmits a signal of the form = (x;, x7). Fuzzy signals are transmitted
to hidden rule nodes through fuzzy weights.

Mutual Subsethood Based Signal Transmission

Since both the signal and the weight are fuzzy sets, being represented by
Gaussian membership functions, the net value of the signal transmitted
along the weight is quantified by the extent of overlap between the two
fuzzy sets. This is measured by theiutual subsethoodnhich is defined

for two fuzzy setsA, B as

C(A N B)
C(A) + C(B) — C(A N B)

£(A, B) = (15.1)

a| whereC(-) is the fuzzy set cardinality. The mutual subsethood measure can
fuzzy set A is defined as

have values in the interval (0,1], and depends upon the relative values of
centers and spreads of fuzzy sets.

Mutual subsethood

fuzzy signal fuzzy weight

Lo o
Ny & A

v

/\Volume defuzzification

Yk

Xi

input node
(numeric or linguistic)

Fig. 15.6 Fuzzy signal transmission in SUPFuUNIS (modified from [446])

As shown in Fig. 15.6, in SUPFuUNIS, a fuzzy input signal is transmitted
along a fuzzy weight, and the net contribution of that input to rule node
Jj is quantified by&;;, the mutual subsethood between the fuzzy signal

15.7

Samples November 17, 2004 13:10

s; = (x, x7) and fuzzy weightv;; = (w{;, wf):
8ij = &(si, wij)
. C(si Nw;j)
 C(si) + Cwij) — Csi N wyj)
Various different cases of overlap can arise. As an example, consider the
case whenx; = wj;. If x7 < wf; then the signal fuzzy set completely

belongs to the weight fuzzy sef; and the cardinalit(s; N w;;) = C(s;).
This can be evaluated as follows:

(15.2)

Clsi Nwij) =C(si) = / o~ =X g
=T (15.3)

x{ = wy;, the two fuzzy sets are identical. In summary, f6r= wy,

C(si) =x7 /T if x7 < wy,
Clsi Nwij) = { C(wij) = wi /7 if x7 > wf;
Clsi) = Cwij) = x) = wi;/m if x7 = wf;

(15.4)

Details of other cases are given in [446]. The corresponding expressions for
E(si, w;;) are obtained by substituting f6(s; N w;;) into Eq. 15.2.
Activity Aggregation at Rule Nodes

By measuring the value of mutual subsethdpdfor a rule nodej we are

in essence assessing the compatibility between the sigaat the fuzzy
weight w;;. Each rule node is expected to somehow aggregate the vector
E; = (&1, ..., &) insuch away that the resulting node activation reflects
the extentto which thatrule fires. The activatignof rule nodej is a mutual
subsethood based product;, n

zj=[1& =T]&6wiy) (15.5)
i=1 i=1

No other transformation of; occurs at a rule node and this numeric
activation value is transmitted unchanged to consequent connections.

Output Layer Signal Computation

The signal of each output node is determined using standard volume
based centroid defuzzification [325]. Since the area of consequent weights
(represented by Gaussian fuzzy sets)ﬂs/?, then,

= Zji':ql Zj ch'k:;k (15.6)

> j=1%jVjk

which is the numeric output obtained. The defuzzifier (Eq. 15.6) essentially
computes a convex sum of consequent set centers. This completes our
discussion on how input vectors are mapped to outputs in SUPFuNIS.

15.7

Samples November 17, 2004

13:10

Neural Networks: A Classroom Approach

For a validation of this assump-
tion refer to [319].

Supervised Learning

The SuPFuNIS is trained using standard gradient descent learning. This
involves repeated presentation of a set of input patterns drawn from the
training set. The output of the network is compared with the desired value
to obtain the error, and network weights are changed on the basis of a square
error minimization criterion. Once the network is trained to the desired level
of error, itis tested by presenting a new set of input patterns drawn from the
test set. The squared errBy used as a training performance parameter is:

1 : k ky2

wheredj? is the desired value at output nogeon iterationk, and the
error is evaluated over alf outputs for a specific pattein For a 1-ofC

class classification the desired outputs will be 0 or 1. Both the centers and
spreadsuf;, v}, wi;, vf;, of antecedent and consequent connections, and
the spreads of the input feature$ are modified on the basis of iterative
update equations [446].

15.7.2 Application: Truck Backer-upper Control Problem

The SuPFuNIS model finds application in a variety of domains. These in-
clude function and time series approximation; data classification; diagnosis;
and control [446]. Here we describe a control application.

The suitability of SuUPFuUNIS for control applications is demonstrated
on the truck backer-upper problem which deals with backing up a truck
to a loading dock. The truck corresponds to the cab part of the truck in
the Nguyen—Widrow [412] neural truck backer-upper system. The truck
position is exactly determined by three state variables, andy, whereg
is facilitated through the angle of the truck with the horizontandy are
the coordinates in the space as depicted in Fig. 15.7. The control of the truck
is facilitated through the steering angleThe truck moves backward by a
fixed unit distance every stage. We also assume enough clearance between
the truck and the loading dock such that the coordiyadees not have to
be considered as an input. We design a control system, whose inputs are
¢ € [-90°, 27(F] and x € [0, 20], and whose output i& € [—-40°, 40°],
such that the final state will be {, ¢ ;) = (10, 90°).

The following kinematic equations are used to simulate the control
system [581]:

x(t 4+ 1)=x(r) + cosgp(t) + 6(z)) + sin@(¢)) sin@(z)) (15.8)
y(t +1)=y(t) + sin(@(z) + 6(¢)) — sin@(z)) cose(r)) (15.9)

ot +1)=¢@) —sin?t (25%@0)))

whereb is the length of the truck and is assumed as 4 for the present

(15.10)

15.7

Samples November 17, 2004 13:10

Loading dock x = 10 ¢ = 90

,:/

x=0 x=20

Fig. 15.7 Diagram of simulated truck and loading zone [446]
(©2002 IEEE. Reprinted with permission)

simulation.

As mentioned above, the training data (adapted from [581]) comprise 238
pairs which are accumulated from 14 sequences of desiteqd §) values.
The 14 initial statesxp, ¢o) are (1,0), (1,90), (1,270), (7,0), (7,90), (7,180),
(7,270), (13,0), (13,90), (13,180), (13,270), (19,90), (19,180), (19,270).
Three initial statesxg, ¢o) = (3, —30), (10,220), and (13,30) were used to
test the performance of the controller. The number of trainable parameters
for this application is (6+2) for anr rule SUPFUNIS network.

We used a normalized variant of tklecking error (which essentially
measures the Euclidean distance from the actual final posiign{) to
the desired final positior(;, x 7)), as well as thérajectory error (the ratio
of the actual length of the trajectory to the straight line distance from the
initial point to the loading dock) as performance measures (derived from
[319)):

. . Or — ¢ 2 Xf— Xq 2
N lized Docking E 15.11
ormalized Docking Erroe= \/(360) + 20 ()

length of truck trajectory

distance (initial position, desired final position)
(15.12)
The docking errors for three test points for three rules and five rules

are shown in Table 15.3. These results demonstrate that SUPFuUNIS is able
to perform very well—with a high docking accuracy—with just 5 rules.
The simulation results are to be compared with Kosko and Kong’s fuzzy
controller for backing up the truck to the dock that used 35 linguistic rules
[319], and the Wang—Mendel controller [581] that used 27 rules which are
either linguistic or a mixture of linguistic and rules obtained from numeric
data. The truck trajectories from three initial states are shown in Fig. 15.8.
The SuPFuNIS is able to successfully generate low error trajectories from
each of the initial test points. In addition in SUPFuUNIS one can incorporate

Trajectory Error=

15.7 Samples November 17, 2004 13:10

6 Neural Networks: A Classroom Approach

Table 15.1 Docking errors for numeric data (adapted from [446])

Initial point (x, y, °) Rules Normalized Trajectory

Docking Error Error
(3,3,-30) 3 0.0087 1.2116
(10,4,220) 3 0.0119 1.2737
(13,3,30) 3 0.0073 1.0540
(3,3,-30) 5 0.0088 1.2106
(10,4,220) 5 0.0120 1.2059
(13,3,30) 5 0.0058 1.0533

Dock

20 ' B 20

18l 18

6 16 |

14| 14y

il 12|

L 10 L
y 10 Vo

ol I

sl 6

4
4, -
N 2| “rT
0 ol 33-30°
0 ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
X X

(a) (b)

Fig. 15.8 Truck trajectories from three testing points (3,3, —30°),
(10, 4, 220), (13, 3, 3(°) (a) using 3 rules and (b) using 5 rules
[446]
(©2002 IEEE. Reprinted with permission)

expert knowledge easily and seamlessly into the network. For more details,
the reader is referred to [446].

15.7.3 Evolvable SuPFuNIS

Genetic Learning
In a real-coded genetic algo-| 14 gyercome the problems commonly encountered with gradient de-
rithm the basic operation is simi-
lar to the binary GA described in| SCE€Nt algorithms, genetic learning was introduced into the SuPFuNIS
the text with the difference aris-| model. The resulting model is called the Evolvable Subsethood-Product
inginthe nature of the crossover | Fuzzy—Neural Inference System (ESuPFuNIS) [564]. The ESuPFuNIS

and mutation operators.

15.7 Samples November 17, 2004 13:10

employs a real-coded genetic algorithm (RGA) to evolve all the trainable
parameters of the network which includes the input feature spreads, and
the antecedent and consequent fuzzy weights. These correspond to the
1 -0 c c o
variablesi; » Wij» Vi Wij» Vjke For an n-g-p network (n in-
Genetic Coding put features, ¢ rule (hidden)

We first describe the coding scheme employed. Figure 15.9 shows th %‘gﬁgta?”:u r:be?“gﬁugvgl‘\’,izfe)

netic coding scheme for the parameters used in the RGA. Each chromas@miifeters is (1 + 2¢(n + p)).
comprises three parts. The first partinvolves feature spreads associatedneithare » inputs and ¢ rule

the input fuzzifier. The second part involves antecedent fuzzy weights| Td§es which give 2ng parame-
ters. Add to this n input spreads,

one for each feature. On the

o
ij

X7 XD Wy Wy W | Ve Vik Vg consequent side there are 2gp
free parameters. This gives (n +
Feature spreads Antecedent set Consequent set 2q(n + p)).
specification specification

Fig. 15.9 String representation of feature spreads and fuzzy weights for
the RGA

antecedent fuzzy weights of all the connections that fan in to each rule node
are coded contiguously. The third and last part concatenates all consequent
fuzzy weights that fan-in to each of the output nodes.

Genetic Algorithm Operators and Operations

We mentioned earlier that the nature of the operators employed in the RGA
are rather different from those employed in the simple GA. We describe one
set of them here—those that were used for optimization on ESuPFuNIS. The
implementation of the RGA in ESUPFuUNIS employs specialized selection,
crossover, and mutation operators, as wells as a novel procedure to generate
the new population.

Crossover The blend crossovepperator (BLXe) [140] is employed in |, g x4 the value of « de-
ESuPFuNIS for performing the crossover operation.(ll}atcj? represent termines the two-sided exten-

the jth gene of two parent chromosomes and C? each of string tsri]on of interval 1 ff(im }Nhiﬁ_h
i _ 1 2 L : 1 2 - e crossover gene value is ulti-

sizes. If Cmax = max(Cy, C7), and Cin = min(Cy;, C7), then we defing .o\ " jected at random.

I = Cmax— Cin, j = 1, - -+, 5. BLX-« generates a single offsprirfg =

(ha,--- ,hj,---,hs) wWhereh; is a randomly chosen number from the

interval [Cmin — I - o, Crnax+ 1 - o].

Mutation The ESuPFuNIS employs aon-uniform mutation(NUM)
operator [388] in its RGA. IfT is the maximum number of generations,
then NUM, when applied to a generatiormutates a gen€; € [a;, b;] to

C as follows: ,
! The NUM operator function

’ {Ci + A(t’ b; — Ci) ifr=0 Alt,y)=y (1—r(l";")b> is de-

/) (15.13) | ©)
Ci— A, Ci—a;) ifT=1 signed to generate perturbation
values on the range [0, y] in
IAY . such away that the probability of

Here,r € {0, 1}, A(t,y) =y (l — r=7)),r is arandom number from thEe function returning numbers

interval [0, 1], andb is a user defined parameter that decides the degreelast to zero increases as the
algorithm steps elapse.

15.7

Samples November 17, 2004

13:10

Neural Networks: A Classroom Approach

The selection mechanism es-
sentially determines the diver-
sity of the population, which de-
pends upon the selection pres-
sure. The selection pressure is
the degree to which the se-
lection mechanism favours bet-
ter individuals. In the present
case, the selection pressure in-
creases with a decrease in nmin.

dependency on the number of generations.

Selection The RGA in ESUPFuUNIS employs lmear ranking selection

and stochastic universal samplingechnique. Linear ranking selection
ranks chromosomes according to their fithess values with the best and
worst chromosomes carrying ranks 1 aMdespectively, wher&v is the
population size. The selection probabiljpy(C) of each chromosome€ is
calculated according to its rank as follows:

1 rank(C?) — 1
ps(C) = N (Tlmax_ (max — Umin)%) (15.14)
Here,C' is theith chromosome withi = 1, - - - |, N; min @andnmax denote

the expected number of copies for the worst and the best chromosomes
respectively withnmin € [0, 1] and nmax = 2 — nmin. Stochastic universal
sampling by simulating a roulette wheel which selects chromosomes for
the next generation based on the selection probabilities.

The values of various RGA parameters employed by ESUPFuUNIS were:
N =100 p. =0.6, p,, =01, « = 0.5, nmin = 0.5, b = 5. More details
on the implementation algorithm are to be found in [564].

15.7.4 Application: Ripley’s Synthetic Data Classification

The Ripley synthetic data set is available from
markov.stats.ox.ac.uk/pub/PRNN. It comprises two dimensional
patterns belonging to two classes. Each class has a bimodal distribution
generated from equal mixtures of Gaussian distributions with identical
covariance matrices [477]. The class distributions have been chosen to
allow a Bayesian classifier error rate of 8 per cent. The training set consists
of 250 patterns with 125 patterns in each class. The test set consists of
1000 patterns with 500 patterns in each class.

For this classification problem, ESUPFUNIS employed a 2-2-2 architec-
ture. A real coded genetic algorithm was employed to evolve the network
parameters. The fithess function combines the root mean squared error with
the misclassification error as follows:

1 & (1L 12 i
F= |23 (2> @ =2)+ =D (a#a) (15.15)
0 0~

k=1 p o=1

where Q is the number of learning patterns involvedjs the number of
outputsid® andy* are the desired and the actuéh outputs of the network
for the kth learning pattern andé, andc, are the desired and the actual
classification of th&th learning pattern by the network.

The ESuPFuNIS gives a test error rate d per cent, a performance
which is better than that of the Bayes classifier. The class separating
boundary learnt by ESUPFuUNIS is shown in Fig. 15.10. The test error rate
of 7.6 per cent of ESUPFuUNIS with two rules, marks an improvement over

15.7 Samples November 17, 2004 13:10

T T

+ Class 1

N A Class 2

1 \ + FE— - - Bayesian Discriminant
+ — ESuPFuNIS

0.67

X2 0.4+

0.2

-0.21 A]

-12 -1 -08 -06 -04-02 0 02 04 06 038
X1

Fig. 15.10 Class separating boundary learnt by ESUPFuUNIS (7.6 per cent
error) along with the Bayesian (8.0 per cent error) decision
boundary for Ripley’s training data

SuPFuNIS which was able to achieve the same error with 10 rules, both in
terms of classification accuracy and rule economy. It also performs better
than various other models as presented in [564].

