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3.13.1 Neuron Abstraction

Our discussion in Chapter 2 focussed on the microscopic behaviour of real
neurons as we now understand them. Real neurons integrate hundreds or
thousands of temporal signals through their dendrites. These signals modify
their internal potential in a complex way that depends on the inhibitory or
excitatory nature of the synapses at which the signals impinge on the cell.
They transmit signals in the form of an action potential when their internal
cell potential at the axon hillock exceeds a threshold of about−40 mV with
respect to the external medium.

Action potentials are signals in
the space-time continuum of ax-
ons.

At synapses, neurons transduce signals—electrical to chemical, and then
from chemical back again to electrical. This change in the form of signals
takes place with the help of complex neurotransmitters and protein based
ion-specific channels. Neurotransmitters released into the extra-cellular
medium selectively open or close channels in the postsynaptic membrane,
thus modulating the internal cell potential of the postsynaptic neuron.
Since the entire neurotransmitter released is not utilized, each synapse
is associated with what we call thesynaptic efficacy—the efficiency with
which a signal is transmitted from the presynaptic to postsynaptic neuron.

3.1.1 Neuron Activations

We draw upon the neuron metaphor in order to integrate important principles
of the working of real neurons into a simple mathematical neuron model.
Figure 3.1 shows thej th artificial neuron that receives input signalssi , from
possiblyn different sources. These signals traverse weighted pathwayswij ,

The neuron abstraction consid-
ered by artificial neural net-
works represents a drastic sim-
plification of real neurons. More
recently, however, neural net-
works have begun to move
closer to neurobiology with the
introduction of pulsed neural
networks which we will study in
Chapter 13.

in order to generate an internalactivationxj , which is a linear weighted
aggregation of the impinging signals, modified by an internal threshold,θj :

Notation: wij denotes the
weight from neuron i to neuron
j . A number of texts use the
reverse convention.

xj =
n∑

i=1

wij si + θj (3.1)

Here, connection weightswij model the synaptic efficacies of various inter-
neuron synapses. Positive weights correspond to excitatory synapses, while
negative weights model inhibitory synapses. Impinging signalssi represent
mathematical abstractions of action potentials. The thresholdθj represents
the internal firing threshold of a real neuron, and the activationxj then
models the internal aggregated cell potential.

The activation of the neuron is subsequently transformed through asignal
functionS(·), to generate the output signalsj = S(xj ) of the neuron. As we
discuss in detail in Section 3.2, a signal function may typically bebinary
threshold, linear threshold, sigmoidal, Gaussian, or probabilistic.

This representation lends con-
venience in the formulation of
learning algorithms which we
will study in forthcoming chap-
ters.

For the sake of notational convenience we often consider the threshold
θj as an additional weightw0j = θj fanning into the neuron with a constant
input s0 = +1 (see Fig. 3.1).

In biological systems, cell potentials change faster than changes in
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Fig. 3.1 Artificial neuronmodel—drawn to remind us of its biological origin

synaptic efficacies. In the brain, a thought or a reasoning process flashes
across neuron ensembles in the form of fast changing patterns of internal
cell potentials and action potentials. In other words, neuron activationsxj ,
change quickly as neurons sample and integrate impinging signals. How-
ever, the learning process—where impinging information is downloaded
into memory by changing synaptic efficacies—takes place on a much longer
time scale. Learning concerns itself with changes in weightswij in response
to stable patterns of activity, and is a slow process. In neural networks
changes in synaptic weights are implemented using alearning algorithm.
We often refer to the rapidly changingxj as ashort term memory(STM)
and to the slowly changingwij aslong term memory(LTM).

3.1.2 Activations Measure Similarities

Equation (3.1) admits a linear algebraic interpretation of the process of
activity aggregation at an artificial neuron. The activationxj is simply the
inner product of the impinging signal vectorS = (s0, . . . , sn)T , with the
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neuronal weight vectorWj = (w0j , . . . , wnj )T :
Note: Throughout we assume
that vectors are in columnar
form.

The closer S is to Wj the larger
the projection or inner product
or activation.

xj = ST Wj =
n∑

i=0

wij si (3.2)

wheres0 = +1 andw0j = θj . This inner product represents a similarity
measure, or the degree of match, between the input signal vector and the
weight vector. In other words, the activation of a neuron measures the
“similarity” between the input signal vector and the neuronal weight vector
of the neuron in question. This formalism allows us to view the neuron as a
linearfilter in the sense that the neuron is able to discriminate between inputs
that are similar to its weight vector (which tend to generate large activations),
and inputs that are dissimilar to the neuron weight vector (which tend to
generate small activations). Notice that ifS is at right angles withWj , the
projection ofS onWj and thereforexj is zero. Suchorthogonalvectors will
generate zero inner-products and thus zero activations. On the other hand,
an input vector completely aligned with the weight vector will generate a
maximal activation, and one that is aligned but in the opposite direction will
generate a maximally negative activation. Always keep these points in your
mind.

We have seen that a neuron filters its inputs with the help of the inner
product, and measures the input-to-weight vector similarity or dissimilarity
with the value of its activation. As Grossberg points out, when endowed
with learning capabilities the neuron thus acquires the status of being an
adaptive filter[194].


