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4.2 Convex Sets, Convex Hulls and Linear Separability

—

Consider two pattern sef§; and X, sampled from two classéy andC,. | Recall that a vector of input fea-
Many subsets dk" contain the pattern sel§ andX,. In the present contexttures is Ca”e‘i a Pat:]‘?fﬂ- T*ITZ
H H . V space from wnich vall
we are interested only in the smallest convex sets that contain thes pi%gms Iy bo derived i5 then
and very shortly we will see why. But first the following definitions are| {e pattern space, typically R".

order. In general any n—dimensional
pattern can be represented by

Definition 4.2.1 a point in pattern space, R".

Let X, YeScR", then § is convex iff A X+ (1—-A)Y eSS, 0<Ai<
1, VX,Y € S. Equivalently, a sef is convex if it contains all points on all line
segments with end points &.

In R", spheres, ellipsoids and cubes are examples of convex sets. Tori
and disconnected sets are not convex. Figure 4.1 portrays some convex and
non-convex sets.
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Fig. 4.2 Convex and non-convex sets in R?

Definition 4.2.2

The convex hullC(X;), of a pattern seX; is the smallest convex set R" which
contains the seéX;. Equivalently, consider every convex skt such thatl; ¢ S, C
R", o € Z, whereT is an index set. Then the convex hullXf, C(X;) = (,er Se-

This only means that we need to take the intersection &'alubsets
that contain the pattern set in question. This intersection yields the smallest
convex set iR" that contains the pattern set. Figure 4.2 shows a computer
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generated convex hull of the Iris data [12], usiM@\TLAB. Notice how
the convex hull ofiris sestosais disjoint from the convex hulls oifis
versicolorandiris virginica. However, the convex hulls afis versicolor
andiris virginica are not separable.

The problem of convex hull com-

putation is an interesting area of 25

research. Neural networks have + Iris versicolor

been applied to this problem A Iris virginica
(see [432)).
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Fig. 4.3 MATLAB generated convex hulls for Iris data [12]

Note: This is a view of the 4-| ¢ shoy|d be intuitively clear that if the convex hulls of two pattern sets
dimensional Iris data projected

on to the x;3-x,4 axes. The con-| &€ non-overlgpplng, we can define a separating hyperplane that slices th(_e
vex hull was generated using| pattern space into two halves, such that the pattern sets are separated. This
MATLAB'’s convhull command. | |eads to the concept of linear separability.

Definition 4.2.3

Two pattern sets(; andX; are said to bdinearly separablgf their convex hulls
are disjoint, that is ilC (X(;) N C(X;) = ¢.

As shown in Fig. 4.3 since some minimum distance separates the two
convex hulls, there exists a hyperplafe that separates the two sets. In
the figures, we use the shorthafidto denote the convex hulf (X;). The
convex hullC; is representative of the pattern cldss
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Fig. 4.4 Linearly separable pattern classes and a separating hyperplane

One separating hyperplane is
the perpendicular bisector of the
straight line joining the closest
two points on the disjoint convex
hulls.



