
5.5 Samples November 17, 2004 13:5

1

5.55.5 Learning Objective for TLNs

Recall from Chapter 4 that the
TLN is a basic building block
for more complicated networks.
Threshold logic neurons when
layered, can generate arbitrarily
complex decision regions.

Observe that a TLN (redrawn for convenience in Fig. 5.8) is actually a linear
neuron whose output is directed into a unit step or signum function. The
neuron is adaptive when its weights are allowed to change in accordance
with a well defined learning law. Widrow called this neuron anadaptive
linear elementor Adaline [592]. Commonly used adaptive algorithms for
such threshold logic neurons are the Perceptron learning algorithm and the
least-mean-square (LMS) algorithm [594]. These will be the subject of our
study in this chapter.

Rosenblatt’s α–Perceptron
model [486] employed
fixed, sparse, and random
connections from the input
layer of neurons to an
intermediate layer of binary
threshold neurons. These
connections effectively mapped
the analog input space into a
Boolean space using a fixed
transformation. The output
neuron activations were set-up
in the usual way—by taking
an inner product of the binary
vector with an adaptive input
weight vector. The output
neuron signal was binary (or
bipolar). Other than the fact
that its inputs were restricted
to be binary, and that it had no
bias weight, the α–Perceptron
was operationally equivalent to
the standard binary threshold
neuron (TLN).

Fig. 5.8 A model for the generic binary threshold logic neuron

As before, the neuron input and weight vectors are assumed to be in
augmented form to accommodate the neuron bias as an adjustable weight:

Xk is the pattern presented at
iteration k; Wk is the neuron
weight vector at iteration k. Note
that x0 = 1 always, and there-
fore does not carry an iteration
index.

Xk = (
x0, x

k
1, . . . , xk

n

)T
Xk ∈ Rn+1 (5.1)

Wk = (
wk

0, . . . , wk
n

)T
Wk ∈ Rn+1 (5.2)

where the iteration indexk has been introduced to explicitly indicate the
temporal nature of these vectors. The neuronal activation,yk = XT

k Wk,
determines whether the neuron fires a 1 or a 0signal in accordance with the
threshold neuronal signal function:

S(yk) =
{

1 yk > 0

0 yk < 0
(5.3)

In the forthcoming discussion we assume that the conditionyk = 0 translates
to an ambiguous signal value, and therefore treat this activation condition
as a misclassification. Weights will be designed to avoid such ambiguous
signal values.

Let us now put our broad objective in place. We wish to design the weights
of a TLN to correctly classify a given set of patterns. For this, we assume
we are given a training setT = {Xk, dk}Qk=1, Xk ∈ Rn+1, dk ∈ {0, 1} where
each patternXk is tagged to one of two classesC0 or C1 denoted by the



5.5 Samples November 17, 2004 13:5

2 Neural Networks: A Classroom Approach

desired outputdk being 0 or 1 respectively. Note that since this is a two
class classification problem the training patterns can be divided into two
subsetsX0,X1 respectively comprising patterns that belong toC0,C1. In
the discussion of the Perceptron and Pocket learning algorithms, we will
see that the use of the desired values will become implicit. Since our focus
will be on the input patterns explicitly, we will refer toX = X0 ∪ X1 as the
training set rather than using the symbolT which includes desired values
also. The two classes will be identified by the two possible signal states of
the TLN—C0 patterns by a signalS(yk) = 0, andC1 patterns by a signal
S(yk) = 1.

Recall that one can design such simple Boolean classifiers by hand—
through the suitable placement of the separating hyperplane (that represents
the neuronal discriminant function). Pattern points are to be separated into
two categories by suitable design of a discriminant function. However, such
design techniques are well suited to problems of low dimensionality, and
prove to be of no use when the classification problem is in higher dimensions.
There is thus the need to design weight update procedures or learning
algorithms that can automatically search out a weight space solution that
can solve the classification problem.The basic objective is to design

an incremental weight update
procedure that can search for
a solution vector that defines a
discriminant function which pro-
vides a clear cut separation of
data points in C0 from those in
C1.

The broad objective of the present exercise is to design a weight
adjustment procedure for TLN weights such that, given two sets of vectors
X0 andX1 belonging to classesC0 andC1 respectively, it searches a solution
weight vectorWS , that correctly classifies the vectors into their respective
classes. In the context of TLNs this translates to saying: Find a weight vector
WS such that for allXk ∈ X1, S(yk) = 1; and for allXk ∈ X0, S(yk) = 0.
Now since positive inner products translate to a +1 signal and negative inner
products to a 0 signal, the above requirement translates to saying that for
all Xk ∈ X1, XT

k WS > 0; and for allXk ∈ X0, XT
k WS < 0.

We learnt in Chapter 3 that a single threshold logic neuron can solve such
a classification problem only for pattern sets that are linearly separable. If the
pattern sets are not linearly separable we cannot hope to solve the problem
using a single neuron, and more complicated networks will be required. For
the present discussion, we therefore assume that the pattern setsX0 and
X1 are linearly separable. This assumption guarantees the existence of a
separating hyperplane which is represented by the weight vectorWS of the
neuron. With this guarantee in place, the next question is: how do we find
WS ?


