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5.95.9 Hand-worked Example and MATLAB Simulation

In this section we cement our understanding developed hitherto, with the
help of a worked example in conjunction with a smallMATLAB simulation.

Fig. 5.11 Binary threshold neuron

Consider the familiar binary threshold neuron in two dimensions shown
in Fig. 5.11. Assume that we wish to train the neuron of Fig. 5.11 to learn
the AND pattern classification problem using Perceptron learning. For this
we will use the four augmented patterns shown in Table 5.1. Here,x0 = 1
in the first column of the table models the constant input to the threshold
weightw0.

Table 5.1 Augmented pattern set for logical AND prob-
lem in two dimensions

Pattern x0 x1 x2 d

1 1 0 0 0

2 1 0 1 0

3 1 1 0 0

4 1 1 1 1

Assume the following simulation parameters:W1 = (0 0 0)T , η = 1.
Table 5.2 shows the iterations for this training set. A� denotes an ambiguous
output. This occurs whenever the activationy = XT W = 0, that isS(0) = �.
Table 5.2 shows that it takes 32 iterations for the system to settle down.
Iterations 33–36 simply check that no misclassification occurs for the four
patterns in question. It is a useful exercise to work through some iterations
(say the first eight) out by hand.



5.5 Samples November 17, 2004 13:5

6 Neural Networks: A Classroom Approach

Recall that each update of weights corresponds to a shift in the separating
hyperplane represented by:

w1x1 + w2x2 + w0 = 0 (5.4)

It is important to understand the correspondence between a weight update
and the movement of the separating hyperplane which in this case is a
straight line. Each instance of weightsWk defines a separating line inx1–
x2 space; each weight perturbation causes a corresponding perturbation in
the orientation and position of the line. This is made clear in Fig. 5.12(a)
which plots hyperplane positions after 5, 15, 25 and 35 iterations. The
correspondence between learning and hyperplane movement should now
be clear from Fig. 5.14.

It is also a good idea to keep both pattern space and weight space
views in one’s mind while understanding the working of the Perceptron
algorithm. For example, see Fig. 5.12(b) which plots weight perturbations
corresponding to Table 5.2 in weight space from an initial weight (0, 0, 0)
to a final weight of (−4, 3, 2). In weight space, each perturbation causes a
movement in a direction perpendicular to the pattern hyperplane of the
corresponding pattern that causes the perturbation. That is why if you
observe carefully, the weight space perturbations in Fig. 5.12(b) take place
only in four directions—perpendicular to each of the four corresponding
pattern hyperplanes.

Figure 5.12 was generated with the help of theMATLABcode of Table??.
Study the code carefully. Notice that this code implementation works with
the non-adjusted training set, that isXk ∈ X. It therefore uses Perceptron
learning in the form specified in Eq.??. The code is straightforward to
understand from the comments. An entry in the binaryupdate flag vector
is set whenever the weights are updated on the pattern corresponding to that
entry. In any epoch, the number of updates is the inner product of theupdate
flag with itself. Theupdate flag is reset on every epoch, and the algorithm
terminates when no weight updates are made in a complete epoch.
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Table 5.2 Weight updates through 36 iterations for the binary threshold
neuron of Fig. 5.11 using Perceptron learning Eq. ??

Iteration No. Xk Wk y s Wk+1
x0 x1 x2 w0 w1 w2

1 1 0 0 0 0 0 0 � –1 0 0
2 1 0 1 –1 0 0 –1 –1 –1 0 0
3 1 1 0 –1 0 0 –1 –1 –1 0 0
4 1 1 1 –1 0 0 –1 –1 0 1 1
5 1 0 0 0 1 1 0 � –1 1 1
6 1 0 1 –1 1 1 0 � –2 1 0
7 1 1 0 –2 1 0 –1 –1 –2 1 0
8 1 1 1 –2 1 0 –1 –1 –1 2 1
9 1 0 0 –1 2 1 –1 –1 –1 2 1

10 1 0 1 –1 2 1 0 � –2 2 0
11 1 1 0 –2 2 0 0 � –3 1 0
12 1 1 1 –3 1 0 –2 –1 –2 2 1
13 1 0 0 –2 2 1 –2 –1 –2 2 1
14 1 0 1 –2 2 1 –1 –1 –2 2 1
15 1 1 0 –2 2 1 0 � –3 1 1
16 1 1 1 –3 1 1 –1 –1 –2 2 2
17 1 0 0 –2 2 2 –2 –1 –2 2 2
18 1 0 1 –2 2 2 0 � –3 2 1
19 1 1 0 –3 2 1 –1 –1 –3 2 1
20 1 1 1 –3 2 1 0 � –2 3 2
21 1 0 0 –2 3 2 –2 –1 –2 3 2
22 1 0 1 –2 3 2 0 � –3 3 1
23 1 1 0 –3 3 1 0 � –4 2 1
24 1 1 1 –4 2 1 –1 –1 –3 3 2
25 1 0 0 –3 3 2 –3 –1 –3 3 2
26 1 0 1 –3 3 2 –1 –1 –3 3 2
27 1 1 0 –3 3 2 0 � –4 2 2
28 1 1 1 –4 2 2 0 � –3 3 3
29 1 0 0 –3 3 3 –3 –1 –3 3 3
30 1 0 1 –3 3 3 0 � –4 3 2
31 1 1 0 –4 3 2 –1 –1 –4 3 2
32 1 1 1 –4 3 2 1 1 –4 3 2
33 1 0 0 –4 3 2 –4 –1 –4 3 2
34 1 0 1 –4 3 2 –2 –1 –4 3 2
35 1 1 0 –4 3 2 –1 –1 –4 3 2
36 1 1 1 –4 3 2 1 1 –4 3 2
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(a) Hyperplane movement depicted during Perceptron learning
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Fig. 5.12 Computer simulations of (a) hyperplane movement in pattern
space; and (b) weight vector movement in weight space


