Contents

Foreword	xiii
Preface	XV
More Acknowledgements	xxiii

Part I	Traces of History and A Neuroscience Briefer	
1. Brain S 1.1 F 1.2 T 1.3 C 1.4 C 1.5 F C	Style Computing: Origins and Issues From the Greeks to the Renaissance 3 The Advent of Modern Neuroscience 6 On the Road to Artificial Intelligence 9 Classical AI and Neural Networks 12 Hybrid Intelligent Systems 14 Chapter Summary 15 Bibliographic Remarks 16	3
2. Lessons 2.1 T 2.2 E C E	s from Neuroscience The Human Brain 17 Biological Neurons 23 Chapter Summary 37 Bibliographic Remarks 38	17
Part II	Feedforward Neural Networks and Supervised Learning	

3. Artificial Neurons, Neural Networks and Architectures

- 3.1 Neuron Abstraction 41
- 3.2 Neuron Signal Functions 44
- 3.3 Mathematical Preliminaries 53
- 3.4 Neural Networks Defined 61
- 3.5 Architectures: Feedforward and Feedback 62
- 3.6 Salient Properties and Application Domains of Neural Networks 65 Chapter Summary 68

Contents

Bibliographic Remarks 69 Review Questions 69

4.	Geon 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	netry of Binary Threshold Neurons and Their NetworksPattern Recognition and Data Classification 72Convex Sets, Convex Hulls and Linear Separability 76Space of Boolean Functions 78Binary Neurons are Pattern Dichotomizers 80Non-linearly Separable Problems 83Capacity of a Simple Threshold Logic Neuron 87Revisiting the XOR Problem 92Multilayer Networks 95How Many Hidden Nodes are Enough? 97Chapter Summary 99Bibliographic Remarks 100Review Questions 100	72
5.	Supe 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16	rvised Learning I: Perceptrons and LMSLearning and Memory 104 From Synapses to Behaviour: The Case of Aplysia 106 Learning Algorithms 110 Error Correction and Gradient Descent Rules 114 The Learning Objective for TLNs 115 Pattern Space and Weight Space 117 Perceptron Learning Algorithm 119 Perceptron Convergence Theorem 122 A Handworked Example and MATLAB Simulation 125 Perceptron Learning and Non-separable Sets 128 Handling Linearly Non-separable Sets 130 α -Least Mean Square Learning 132 MSE Error Surface and its Geometry 137 Steepest Descent Search with Exact Gradient Information 143 μ -LMS: Approximate Gradient Descent 147 Application of LMS to Noise Cancellation 152 <i>Chapter Summary</i> 156 Bibliographic Remarks 157 Review Questions 158	104
6.	Supe 6.1 6.2 6.3 6.4 6.5 6.6	rvised Learning II: Backpropagation and Beyond Multilayered Network Architectures 164 Backpropagation Learning Algorithm 167 Handworked Example 177 MATLAB Simulation Examples 181 Practical Considerations in Implementing the BP Algorithm 187 Structure Growing Algorithms 196	164

viii

Contents	1X			
 Fast Relatives of Backpropagation 198 Universal Function Approximation and Neural Networks 199 Applications of Feedforward Neural Networks 201 Reinforcement Learning: A Brief Review 205 Chapter Summary 212 Bibliographic Remarks 213 Review Questions 214 				
. Neural Networks: A Statistical Pattern Recognition Perspective				
Introduction 218 Bayes' Theorem 219 Two Instructive MATLAB Simulations 222 Implementing Classification Decisions with Bayes' Theorem 227 Probabilistic Interpretation of a Neuron Discriminant Function 230 MATLAB Simulation: Plotting Bayesian Decision Boundaries 232 Interpreting Neuron Signals as Probabilities 236 Multilayered Networks, Error Functions and Posterior Probabilities 239 Error Functions for Classification Problems 245 <i>Chapter Summary</i> 254 <i>Bibliographic Remarks</i> 255 <i>Review Questions</i> 255				
ussing on Generalization: Support Vector Machines and				
Iial Basis Function NetworksLearning From Examples and Generalization259Statistical Learning Theory Briefer264Support Vector Machines273Radial Basis Function Networks304Regularization Theory Route to RBFNs314Generalized Radial Basis Function Network323Learning in RBFN's326Image Classification Application329Other Models For Valid Generalization334Chapter Summary339Bibliographic Remarks341Review Questions341	259			
	Fast Relatives of Backpropagation 198 Universal Function Approximation and Neural Networks 199 Applications of Feedforward Neural Networks 201 Preinforcement Learning: A Brief Review 205 Chapter Summary 212 Bibliographic Remarks 213 Review Questions 214 tral Networks: A Statistical Pattern Recognition Perspective Introduction 218 Bayes' Theorem 219 Two Instructive MATLAB Simulations 222 Implementing Classification Decisions with Bayes' Theorem 227 Probabilistic Interpretation of a Neuron Discriminant Function 230 MATLAB Simulation: Plotting Bayesian Decision Boundaries 232 Interpreting Neuron Signals as Probabilities 236 Multilayered Networks, Error Functions and Posterior Probabilities 239 Error Functions for Classification Problems 245 Chapter Summary 254 Bibliographic Remarks 255 Review Questions 255 ussing on Generalization: Support Vector Machines and Ital Basis Function Networks 304 Regularization Theory Briefer 264 Support Vector Machines 273 Radial Basis Function Networks 304 Regularization Theory Route to RBFNs 314 Generalized Radial Basis Function Network 323 Learning in			

Part III

.

Recurrent Neurodynamical Systems

9. Dynamical Systems Review

9.1 States, State Vectors and Dynamics 347

X		Contents
9	.2	State Equations 350
9	.3	Attractors and Stability 352
9	.4	Linear Dynamical Systems 354
9	.5	Non-linear Dynamical Systems 358
9	.6	Lyapunov Stability 363
9	.7	Neurodynamical Systems 369
9	.8	The Cohen-Grossberg Theorem 373
		Chapter Summary 375
		Bibliographic Remarks 376
		Review Questions 376
10. A	ttra	ctor Neural Networks
1	0.1	Introduction 378
1	0.2	Associative Learning 379
1	0.3	Attractor Neural Network Associative Memory 382
1	0.4	Linear Associative Memory 386
1	0.5	Hopfield Network 389
1	0.6	Content Addressable Memory 397
1	0.7	Two Handworked Examples 400
10	0.8	Example of Recall of Memories in Continuous Time 404
10	0.9	Spurious Attractors 405
1	0.10	Error Correction with Bipolar Encoding 40/
1	0.11	Applications of Hopfield Networks 409
1	0.12	Proin State in a Pex Neural Network 412
1	0.13	Simulated Annealing 426
1	0.14	Boltzmann Machine 431
1	0.15	Bidirectional Associative Memory 440
1	0.17	Handworked Example 443
1	0.18	BAM Stability Analysis 447
1	0.19	Error Correction in BAMs 448
1	0.20	Memory Annihilation of Structured Maps in BAMs 450
1	0.21	Continuous BAMs 457
1	0.22	Adaptive BAMs 458
1	0.23	Application: Pattern Association 461
		Chapter Summary 462
		Bibliographic Remarks 464
		Review Questions 464
11. A	dapt	tive Resonance Theory
1	1.1	Noise-Saturation Dilemma 469
1	1.2	Solving the Noise-Saturation Dilemma 471
1	1.3	Recurrent On-center–Off-surround Networks 477
1	1.4	Building Blocks of Adaptive Resonance 482

- 11.6 Structural Details of the Resonance Model 489
- 11.7 Adaptive Resonance Theory I (ART I) 491
- 11.8 Handworked Example 502
- 11.9 MATLAB Code Description 504
- 11.10 A Breezy Review of ART Operating Principles 506
- 11.11 Neurophysiological Evidence for ART Mechanisms 507
- 11.12 Applications 511 Chapter Summary 516 Bibliographic Remarks 517 Review Questions 518

12. Towards the Self-organizing Feature Map

- 12.1 Self-organization 521
- 12.2 Maximal Eigenvector Filtering 522
- 12.3 Extracting Principal Components: Sanger's Rule 530
- 12.4 Generalized Learning Laws 532
- 12.5 Competitive Learning Revisited 537
- 12.6 Vector Quantization 540
- 12.7 Mexican Hat Networks 546
- 12.8 Self-organizing Feature Maps 552
- 12.9 Applications of the Self Organizing Map 563 Chapter Summary 569 Bibliographic Remarks 570 Review Questions 571

Contemporary Topics

13. Pulsed Neuron Models: The New Generation

- 13.1 Introduction 577
- 13.2 Spiking Neuron Model 578
- 13.3 Integrate-and-Fire Neurons 586
- 13.4 Conductance Based Models 594
- 13.5 Computing with Spiking Neurons 608
- 13.6 Reflections ... 616 Chapter Summary 617 Bibliographic Remarks 618

14. Fuzzy Sets, Fuzzy Systems and Applications

- 14.1 Need for Numeric and Linguistic Processing 620
- 14.2 Fuzzy Uncertainty and the Linguistic Variable 621
- 14.3 Fuzzy Set 622
- 14.4 Membership Functions 624

521

577

xii	Contents	
14.5 14.6 14.7 14.8 14.9 14.10	Geometry of Fuzzy Sets 627 Simple Operations on Fuzzy Sets 628 Fuzzy Rules for Approximate Reasoning 632 Rule Composition and Deffuzification 634 Fuzzy Engineering 638 Applications 644 <i>Chapter Summary</i> 649 <i>Bibliographic Remarks</i> 650 <i>Review Questions</i> 650	
15. Neur	al Networks and the Soft Computing Paradigm	652
15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	Soft Computing = Neural + Fuzzy + Evolutionary 652 Neural Networks: A Summary 654 Fuzzy Sets and Systems: A Summary 656 Genetic Algorithms 658 Neural Networks and Fuzzy Logic 662 Neuro-Fuzzy-Genetic Integration 671 Integration Example: Subsethood-Product Based Fuzzy–Neural Inference System 675 A Concluding Note 683 Chapter Summary 684 Bibliographic Remarks 685	
Appendi A.1 A.2 A.3 A.4	x A: Neural Network Hardware Motivation and Issues 686 Analog Building Blocks for Neuromorphic Networks 687 Digital Techniques 691 Bibliographic Remarks 692	686
Appendi	x B: Web Pointers	694
Bibliogra	phy	697
Index		729