CHAPTER 12

Solved Problems

P.12.11 Skylark Airways is planning to acquire a light commercial aircraft for flying class clients at an investment of Rs 50,00,000. The expected cash flow after tax for the next three years is as follows:

				· ·	,
Yea	ur 1	Y	'ear 2	Y	ear 3
CFAT	Probability	CFAT	Probability	CFAT	Probability
14	0.1	15	0.1	18	0.2
18	0.2	20	0.3	25	0.5
25	0.4	32	0.4	35	0.2
40	0.3	45	0.2	48	0.1

The Company wishes to take into consideration all possible risk factors relating to an airline operations. The Company wants to know:

(i) The expected NPV of this venture assuming independent probability distribution with 6 per cent risk free rate of interest.

(ii) The possible deviation in expected value

(iii) How would standard deviation of the present value distribution help in capital budgeting decisions.

<u> </u>		
	IITION	
	auon	

(i)			De	termination of	expected	I CFAT	(Amou	nt in lak	h of rupees)
		Year 1			Year 2	2		Year.	3
	CFAT	P_{i}	Cash flow	CFAT	P_{i}	Cash flow	CF	P_{i}	Cash flow
			$(CF \times P_j)$		-	$(CF \times P_j)$			$(CF \times P_j)$
	Rs 14	0.1	1.4	Rs 15	0.1	1.5	Rs 18	0.2	3.6
	18	0.2	3.6	20	0.3	6	25	0.5	12.5
	25	0.4	10	32	0.4	12.8	35	0.2	7
	40	0.3	12	45	0.2	9	48	0.1	4.8
Me	an	27			29.3			27.9	

		Determination of expected	ed NPV	
	CFAT	PV fac	Total PV	
	27		25.461	
	29.3		0.890	26.077
	27.9		0.840	23.436
	Total PV of CFAT			74.974
	Less: Cash outflows			50.000
	NPV			24.974
(ii)		Determination of standa	ard deviation for each y	ear
		<i>(x)</i>	P_{jl}	$\mathbf{P}_{\mathbf{j}^I}$
Yea	ar 1			
	169	х	0.1	16.9
	81	x	0.2	16.2
	4	х	0.4	1.6
	169	х	0.3	50.7
				85.4
				$\sigma_1 = = 9.24$
		<i>(x)</i>	P _{j2}	P_{j2}
Yea	ar 2			
	204.49	х	0.1	20.449
	86.49	х	0.3	25.947

	7.29	x	0.4	2.916
	246.49	Х	0.2	49.298
				98.61 σ ₂ = = 9.93
		<i>(x)</i>	P_{j^3}	P_{j^3}
Year 3				
	98.01	х	0.2	19.602
	8.41	Х	0.5	4.205
	50.41	Х	0.2	10.082
	404.01	Х	0.1	40.401
				74.29
				$\sigma_{_3} = = 8.61$

Standard deviation about the expected value =

σ=

(iii) Standard deviation enables to make use of the normal probability distribution to have more insight about the element of risk in capital budgeting. The use of the normal probability distribution will enable the decision-maker to have an idea of the probability of different expected values of NPV, that is the probability of having the value of zero or less; greater than zero and within the range of two values. The formula is $Z = (Expected value - NPV)/\sigma$. If the probability of having NPV of zero or less is considerably low, say 0.005, it implies that the risk in the project is negligible and the project is worth accepting.

P.12.12 A company is evaluating three proposed projects	. You are required to rank the projects with respect
to both risk and returns. The relevant data are given as fol	lows:

	Α		В	(C
NPV	Probability	NPV	Probability	NPV	Probability
Rs (3,500)	0.05	(Rs 2,000)	0.01	Rs (4,500)	0.03
(1,000)	0.10	0	0.04	(1,500)	0.07
0	0.15	500	0.15	0	0.10
2,000	0.20	1,500	0.20	3,000	0.50
4,000	0.25	2,000	0.30	4,000	0.25
6,000	0.15	2,500	0.20	5,000	0.05
11,000	0.08	3,000	0.06	—	—
17,500	0.02	3,750	0.04	—	—

			Expe	cted NPV				
	Project A			Р	roject B		Project	C C
NPV	P_{i}	$(NPV \times P_i)$	NPV	P_{i}	$(NPV \times P_i)$	NPV	P_{i}	$(NPV \times P_i)$
Rs (3,500)	0.05	Rs (175)	Rs (2,000)	0.01	Rs (20)	Rs (4,500)	0.03	Rs (135)
(1,000)	0.10	(100)	0	0.04	0	(1,500)	0.07	(105)
0	0.15	0	500	0.15	75	0	0.10	0
2,000	0.20	400	1,500	0.20	300	3,000	0.50	1,500
4,000	0.25	1,000	2,000	0.30	600	4,000	0.25	1,000
6,000	0.15	900	2,500	0.20	500	5,000	0.05	250
11,000	0.08	880	3,000	0.06	180	_		_
17,500	0.02	350	3,750	0.04	150	_		_
Expected		3,255	Expected		1,785	Expected		2,510
Project A		Determinatio	n of standard d	eviation at	oout the expec	ted NPV		
NPV.			NPV_{i} –	(NPV _i	$(-)^{2}$	P_{i}	($(NPV_i -)^2 P_i$

Rs 4,56,30,025

Rs 22,81,501

Rs 0.15

Solution

Rs (3,500)

Rs 3,255

Rs (6,755)

(1,000)	3,255	(4,255)	1,81,05,025	0.10	1,81,050
0	3,255	(3,255)	1,05,95,025	0.15	15,89,254
2,000	3,255	(1,255)	15,75,025	0.20	3,15,005
4,000	3,255	745	5,55,025	0.25	1,38,756
6,000	3,255	2,745	75,35,025	0.15	11,30,254
11.000	3.255	7,745	59.98.025	0.08	47.98.602
17.500	3.255	14.245	20.29.20.025	0.02	40.58.400
,	-,	, -	-, -, -,	$\Sigma(NPV_i -)^2P_i$	144,92,823
Project B					
NPV _i		$NPV_i -$	$(NPV_{i} -)^{2}$	P_i	$(NPV_i -)^2P_i$
Rs (2,000)	Rs 1,785	Rs (3,785)	Rs 1,43,26,225	0.01	Rs 1,43,262
0	1,785	(1,785)	31,86,225	0.04	1,27,449
500	1,785	(1,285)	16,51,225	0.15	2,47,684
1,500	1,785	(285)	81,225	0.20	16,245
2,000	1,785	215	46,225	0.30	13,867
2,500	1,785	715	5,11,225	0.20	1,02.245
3,000	1,785	1,215	14,76,225	0.06	8,85,735
3,750	1,785	1,965	38,61,225	0.04	1,54,449
				$\Sigma(NPV_i -)^2P_i$	16,90,936
Project C					
Rs (4,500)	Rs 2,510	Rs (7,010)	Rs 4,91,40,100	0.03	Rs 14,74,203
(1,500)	2,510	(4,010)	1,60,80,100	0.07	11,25,607
0	2,510	(2.510)	63.00.100	0.10	6.30.010
3.000	2,510	490	2.40.100	0.50	1.20.050
4.000	2,510	1.490	22.20.100	0.25	5.55.025
5.000	2,510	2,490	62.00.100	0.05	3,10,005
	2,010	2,100	02,00,100	$\Sigma(NPV_i -)^2P_i$	42,14,900
		= 3	,833		
		= 1,	,300		
		= 2	,053		
Determination o	of coefficient of	variation (V) =			
		$V_A =$			
		$V_B =$			
		$V_{C} =$			
		Ran	king of projects		
	Project		Return	Risk	
	A		1	3	
	В		3	1	
	C		2	2	
P.12.13 What wo	ould be the risk-a following data to	adjusted rates o o determine the	f discount for projects risk-return trade-offs:	s, A, B and C in P.12.	6 if the company
Coefficient of you	riation A	Aankat disaaunt n	ata Cooffician	t of variation M	ankat discount nate

Coefficient of variation	Market discount rate	Coefficient of variation	Market discount rate
0.0	8.0	1.2	14.0
0.2	9.0	1.4	15.0
0.4	10.0	1.6	16.0
0.6	11.0	1.8	17.0
0.8	12.0	2.0	18.0
1.0	13.0		
Solution			
Project	Coefficient of va	riation Market di	scount rate (%)

А	1.178	14
В	0.730	12
С	0.818	13

Review Questions

12.14 The probability distributions of two projects' NPV are given below:

Project X		Project Y	
NPV	Probability	NPV	Probability
Rs 5,000	0.2	0	0.1
7,500	0.7	Rs 7,500	0.7
10,000	0.1	15,000	0.2

Calculate the expected value, the standard deviation, and the coefficient of variation for each project. Which of these mutually exclusive projects do you prefer and why?

12.15 Determine the risk-adjusted net present value of the following projects:

Net cash outlays (Rs)	1,00,000	1,20,000	2,10,000
Project life (years)	5	5	5
Annual cash inflow (Rs)	30,000	42,000	70,000
Coefficient of variation	0.4	0.8	1.2

The company selects the risk-adjusted rate of discount on the basis of the coefficient of variation:

Coefficient of variation	Risk-adjusted rate of discount
0.0	0.10
0.4	0.12
0.8	0.14
1.2	0.16
1.6	0.18
2.0	0.22
More than 2.0	0.25

12.16 A company is considering two mutually exclusive projects X and Y. Project X costs Rs 30,000 and Project Y Rs 36,000. You have been given below the net present value probability distribution for each project:

Project X		Project Y		
NPV estimate	Probability	NPV estimate	Probability	
Rs 3,000	0.1	Rs 3,000	0.2	
6,000	0.4	6,000	0.3	
12,000	0.4	12,000	0.3	
15,000	0.1	15,000	0.2	
Rs 3,000 6,000 12,000 15,000	0.1 0.4 0.4 0.1	Rs 3,000 6,000 12,000 15,000	0.2 0.3 0.3 0.2	

(a) Compute the expected net present value of projects X and Y.

(b) Compute the risk attached to each project that is, standard deviation of each probability distribution.

(c) Which project do you consider more risky and why?

(d) Compute the profitability index of each project.

Answers

12.14 Expected NPV_x = Rs 7,250; Expected NPV_y = Rs 8,250.

 $\sigma_x - 1,346, \ \sigma_y = 4,039.$

 $V_x = 0.185, V_y = 0.489.$

Therefore, project X is preferable.

12.15 Project A = Rs 8,150; B = Rs 24,186; C = Rs 19,180.

12.16 (a) Expected NPV of X = Rs 9,000; Expected NPV of Y = Rs9,000.

(b) $\sigma_x = 3,795; \sigma_y = 4,450.$

(c) Project Y is riskier ($V_x = 0.421$; $V_y = 0.494$). (d) $Pl_x = 1.3$; $Pl_y = 1.25$.