Contents

Preface xix

List of Symbols xxv

1 INTRODUCTION

- 1.1 What is Mechanics? 2
- 1.2 Fundamental Concepts and Principles 2
- 1.3 Systems of Units 5
- 1.4 Conversion from One system of Units to Another 10
- 1.5 Method of Problem Solution 11
- 1.6 Numerical Accuracy 13

2 STATICS OF PARTICLES

15

2.1 Introduction 16

Forces in a Plane 16

- 2.2 Force on a Particle. Resultant of Two Forces 16
- 2.3 Vectors 17
- 2.4 Addition of Vectors 18
- 2.5 Resultant of Several Concurrent Forces 20
- 2.6 Resolution of a Force into Components 21
- 2.7 Rectangular Components of a Force. Unit Vectors 27
- 2.8 Addition of Forces by Summing x and y Components 30
- 2.9 Equilibrium of a Particle 35
- 2.10 Newton's First Law of Motion 36
- 2.11 Problems Involving the Equilibrium of a Particle. **Free-Body Diagrams** 36

Forces in Space 45

- 2.12 Rectangular Components of a Force in Space 45
- 2.13 Force Defined by Its Magnitude and Two Points on Its Line of Action 48

2.14 Addition of Concurrent Forces in Space 49**2.15** Equilibrium of a Particle in Space 57

Review and Summary for Chapter 264Review Problems67Computer Problems69

3

RIGID BODIES: EQUIVALENT SYSTEMS OF FORCES

73

- 3.1 Introduction 74
- 3.2 External and Internal Forces 74
- 3.3 Principle of Transmissibility. Equivalent Forces 75
- 3.4 Vector Product of Two Vectors 77
- 3.5 Vector Products Expressed in Terms of Rectangular Components 79
- 3.6 Moment of a Force about a Point 81
- 3.7 Varignon's Theorem 83
- 3.8 Rectangular Components of the Moment of a Force 83
- 3.9 Scalar Product of Two Vectors 93
- 3.10 Mixed Triple Product of Three Vectors 95
- 3.11 Moment of a Force about a Given Axis 97
- 3.12 Moment of a Couple 107
- 3.13 Equivalent Couples 108
- 3.14 Addition of Couples 110
- 3.15 Couples Can Be Represented by Vectors 110
- 3.16 Resolution of a Given Force Into a Force at *O* and a Couple 111
- 3.17 Reduction of a System of Forces to One Force and One Couple 122
- 3.18 Equivalent Systems of Forces 123
- 3.19 Equipollent Systems of Vectors 124
- 3.20 Further Reduction of a System of Forces 124
- *3.21 Reduction of a System of Forces to a Wrench 127

Review and Summary for Chapter 3 146 Review Problems 151 Computer Problems 153

4 Equilibrium of Rigid Bodies

157

- 4.1 Introduction 158
- 4.2 Free-Body Diagram 159

Equilibrium in Two Dimensions 160

- 4.3 Reactions at Supports and Connections for a Two-Dimensional Structure 160
- 4.4 Equilibrium of a Rigid Body in Two Dimensions 162
- 4.5 Statically Indeterminate Reactions. Partial Constraints 164
- 4.6 Equilibrium of a Two-Force Body 183
- 4.7 Equilibrium of a Three-Force Body 184

Equilibrium in Three Dimensions 191

4.8 Equilibrium of a Rigid Body in Three Dimensions 191

Review and Summary for Chapter 4 211 Review Problems 213 Computer Problems 215

28

DISTRIBUTED FORCES: CENTROIDS AND CENTERS OF GRAVITY

219

5.1 Introduction 220

Areas and Lines 220

- 5.2 Center of Gravity of a Two-Dimensional Body 220
- 5.3 Centroids of Areas and Lines 222
- 5.4 First Moments of Areas and Lines 223
- 5.5 Composite Plates and Wires 226
- 5.6 Determination of Centroids by Integration 236
- 5.7 Theorems of Pappus-Guldinus 238
- ***5.8** Distributed Loads on Beams 248
- *5.9 Forces on Submerged Surfaces 249

Volumes 259

- 5.10 Center of Gravity of a Three-Dimensional Body. Centroid of a Volume 259
- 5.11 Composite Bodies 262
- 5.12 Determination of Centroids of Volumes by Integration 262

Review and Summary for Chapter 5274Review Problems278Computer Problems281

6

ANALYSIS OF STRUCTURES

284

6.1 Introduction 285

Trusses 286

- 6.2 Definition of a Truss 286
- 6.3 Simple Trusses 288
- 6.4 Analysis of Trusses by the Method of Joints 289
- *6.5 Joints under Special Loading Conditions 291
- *6.6 Space Trusses 293
- 6.7 Analysis of Trusses by the Method of Sections 303
- *6.8 Trusses Made of Several Simple Trusses 304

Frames and Machines 315

- 6.9 Structures Containing Multiforce Members 315
- 6.10 Analysis of a Frame 315
- 6.11 Frames Which Cease to Be Rigid When Detached from Their Supports 316
- 6.12 Machines 331

Review and Summary for Chapter 6343Review Problems346Computer Problems349

7 FORCES IN BEAMS AND CABLES

353

- *7.1 Introduction 354
- *7.2 Internal Forces in Members 354

Beams 361

- *7.3 Various Types of Loading and Support 361
- *7.4 Shear and Bending Moment in a Beam 362
- *7.5 Shear and Bending-Moment Diagrams 364
- *7.6 Relations among Load, Shear, and Bending Moment 372

Cables 383

- *7.7 Cables with Concentrated Loads 383
- *7.8 Cables with Distributed Loads 384
- *7.9 Parabolic Cable 385
- *7.10 Catenary 394

Review and Summary for Chapter 7402Review Problems405Computer Problems408

8 FRICTION

411

- 8.1 Introduction 412
- 8.2 The Laws of Dry Friction. Coefficients of Friction 412
- 8.3 Angles of Friction 415
- 8.4 Problems Involving Dry Friction 416
- 8.5 Wedges 431
- 8.6 Square-Threaded Screws 431
- *8.7 Journal Bearings. Axle Friction 440
- ***8.8** Thrust Bearings. Disk Friction 442
- *8.9 Wheel Friction. Rolling Resistance 443
- *8.10 Belt Friction 450

Review and Summary for Chapter 8461Review Problems464Computer Problems467

9

DISTRIBUTED FORCES: MOMENTS OF INERTIA

471

9.1 Introduction 472

Moments of Inertia of Areas 473

- 9.2 Second Moment, or Moment of Inertia, of an Area 473
- **9.3** Determination of the Moment of Inertia of an Area by Integration 474
- 9.4 Polar Moment of Inertia 475
- 9.5 Radius of Gyration of an Area 476
- 9.6 Parallel-Axis Theorem 483
- 9.7 Moments of Inertia of Composite Areas 484
- *9.8 Product of Inertia 497
- *9.9 Principal Axes and Principal Moments of Inertia 498

*9.10 Mohr's Circle for Moments and Products of Inertia 506

Moments of Inertia of Masses 512

- 9.11 Moment of Inertia of a Mass 512
- 9.12 Parallel-Axis Theorem 514
- 9.13 Moments of Inertia of Thin Plates 515
- **9.14** Determination of the Moment of Inertia of a Three-Dimensional Body by Integration 516
- 9.15 Moments of Inertia of Composite Bodies 516
- *9.16 Moment of Inertia of a Body with Respect to an Arbitrary Axis through *O*. Mass Products of Inertia 531
- *9.17 Ellipsoid of Inertia. Principal Axes of Inertia 532
- *9.18 Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape 534

Review and Summary for Chapter 9 545 Review Problems 551 Computer Problems 554

10 METHOD OF VIRTUAL WORK

557

- *10.1 Introduction 558
- *10.2 Work of a Force 558
- *10.3 Principle of Virtual Work 561
- *10.4 Applications of the Principle of Virtual Work 562
- *10.5 Real Machines. Mechanical Efficiency 564
- *10.6 Work of a Force during a Finite Displacement 578
- *10.7 Potential Energy 580
- *10.8 Potential Energy and Equilibrium 581
- *10.9 Stability of Equilibrium 582

Review and Summary for Chapter 10 592 Review Problems 595 Computer Problems 597

11 KINEMATICS OF PARTICLES

601

11.1 Introduction to Dynamics 602

Rectilinear Motion of Particles 603

- 11.2 Position, Velocity, and Acceleration 603
- 11.3 Determination of the Motion of a Particle 607
- 11.4 Uniform Rectilinear Motion 616
- 11.5 Uniformly Accelerated Rectilinear Motion 617
- 11.6 Motion of Several Particles 618
- *11.7 Graphical Solution of Rectilinear-Motion Problems 630
- *11.8 Other Graphical Methods 631

Curvilinear Motion of Particles 641

- **11.9** Position Vector, Velocity, and Acceleration 641
- 11.10 Derivatives of Vector Functions 643
- 11.11 Rectangular Components of Velocity and Acceleration 645

11.12 Motion Relative to a Frame in Translation 646

11.13 Tangential and Normal Components 663

11.14 Radial and Transverse Components 666

Review and Summary for Chapter 11 680 Review Problems 684 Computer Problems 687

12

KINETICS OF PARTICLES: NEWTON'S SECOND LAW

691

- 12.1 Introduction 692
- 12.2 Newton's Second Law of Motion 693
- 12.3 Linear Momentum of a Particle. Rate of Change of Linear Momentum 694
- 12.4 Systems of Units 695
- 12.5 Equations of Motion 697
- 12.6 Dynamic Equilibrium 699
- 12.7 Angular Momentum of a Particle. Rate of Change of Angular Momentum 718
- 12.8 Equations of Motion in Terms of Radial and Transverse Components 719
- 12.9 Motion under a Central Force. Conservation of Angular Momentum 720
- 12.10 Newton's Law of Gravitation 721
- *12.11 Trajectory of a Particle under a Central Force 731
- *12.12 Application to Space Mechanics 732
- *12.13 Kepler's Laws of Planetary Motion 735

Review and Summary for Chapter 12 744 Review Problems 784 Computer Problems 751

13

KINETICS OF PARTICLES: ENERGY AND MOMENTUM METHODS

755

- 13.1 Introduction 756
- 13.2 Work of a Force 756
- 13.3 Kinetic Energy of a Particle. Principle of Work and Energy 760
- 13.4 Applications of the Principle of Work and Energy 762
- 13.5 Power and Efficiency 763
- **13.6** Potential Energy 781
- *13.7 Conservative Forces 783
- **13.8** Conservation of Energy 784
- 13.9 Motion under a Conservative Central Force. Application to Space Mechanics 786
- 13.10 Principle of Impulse and Momentum 805
- 13.11 Impulsive Motion 808
- 13.12 Impact 820
- 13.13 Direct Central Impact 820
- **13.14** Oblique Central Impact 823
- 13.15 Problems Involving Energy and Momentum 826

Review and Summary for Chapter 13 842 Review Problems 848 Computer Problems 851

14 SYSTEMS OF PARTICLES

855

- 14.1 Introduction 856
- 14.2 Application of Newton's Laws to the Motion of a System of Particles. Effective Forces 856
- 14.3 Linear and Angular Momentum of a System of Particles 859
- 14.4 Motion of the Mass Center of a System of Particles 860
- 14.5 Angular Momentum of a System of Particles about Its Mass Center 862
- 14.6 Conservation of Momentum for a System of Particles 864
- 14.7 Kinetic Energy of a System of Particles 873
- 14.8 Work-Energy Principle. Conservation of Energy for a System of Particles 875
- 14.9 Principle of Impulse and Momentum for a System of Particles 875
- *14.10 Variable Systems of Particles 886
- *14.11 Steady Stream of Particles 886
- *14.12 Systems Gaining or Losing Mass 889

Review and Summary for Chapter 14 904 Review Problems 908 Computer Problems 911

15 KINEMATICS OF RIGID BODIES

915

- 15.1 Introduction 916
- 15.2 Translation 918
- 15.3 Rotation about a Fixed Axis 919
- **15.4** Equations Defining the Rotation of a Rigid Body about a Fixed Axis 922
- 15.5 General Plane Motion 932
- **15.6** Absolute and Relative Velocity in Plane Motion 934
- 15.7 Instantaneous Center of Rotation in Plane Motion 945
- **15.8** Absolute and Relative Acceleration in Plane Motion 956
- *15.9 Analysis of Plane Motion in Terms of a Parameter 958
- **15.10** Rate of Change of a Vector with Respect to a Rotating Frame 971
- 15.11 Plane Motion of a Particle Relative to a Rotating Frame. Coriolis Acceleration 973
- *15.12 Motion about a Fixed Point 984
- *15.13 General Motion 987
- *15.14 Three-Dimensional Motion of a Particle Relative to a Rotating Frame. Coriolis Acceleration 998
- *15.15 Frame of Reference in General Motion 999

Review and Summary for Chapter 15 1011 Review Problems 1018 Computer Problems 1021

16 PLANE MOTION OF RIGID BODIES: FORCES AND ACCELERATIONS

1025

- 16.1 Introduction 1026
- 16.2 Equations of Motion for a Rigid Body 1027
 - 16.3 Angular Momentum of a Rigid Body in Plane Motion 1028
 - 16.4 Plane Motion of a Rigid Body. d'Alembert's Principle 1029
- *16.5 A Remark on the Axioms of the Mechanics of Rigid Bodies 1030
- 16.6 Solution of Problems Involving the Motion of a Rigid Body 1031
- 16.7 Systems of Rigid Bodies 1032
- 16.8 Constrained Plane Motion 1051

Review and Summary for Chapter 161073Review Problems1075Computer Problems1078

17 PLANE MOTION OF RIGID BODIES: ENERGY AND MOMENTUM METHODS

1081

- 17.1 Introduction 1082
- **17.2** Principle of Work and Energy for a Rigid Body 1082
- 17.3 Work of Forces Acting on a Rigid Body 1083
- 17.4 Kinetic Energy of a Rigid Body in Plane Motion 1084
- 17.5 Systems of Rigid Bodies 1085
- 17.6 Conservation of Energy 1086
- 17.7 Power 1087
- 17.8 Principle of Impulse and Momentum for the Plane Motion of a Rigid Body 1104
- 17.9 Systems of Rigid Bodies 1107
- 17.10 Conservation of Angular Momentum 1107
- 17.11 Impulsive Motion 1120
- 17.12 Eccentric Impact 1120

Review and Summary for Chapter 17 1134 Review Problems 1138 Computer Problems 1141

18

KINETICS OF RIGID BODIES IN THREE DIMENSIONS 1145

- *18.1 Introduction 1146
- *18.2 Angular Momentum of a Rigid Body in Three Dimensions 1147
- *18.3 Application of the Principle of Impulse and Momentum to the Three-Dimensional Motion of a Rigid Body 1151
- *18.4 Kinetic Energy of a Rigid Body in Three Dimensions 1152
- *18.5 Motion of a Rigid Body in Three Dimensions 1165
- *18.6 Euler's Equations of Motion. Extension of d'Alembert's Principle to the Motion of a Rigid Body in Three Dimensions 1166
- *18.7 Motion of a Rigid Body about a Fixed Point 1167
- *18.8 Rotation of a Rigid Body about a Fixed Axis 1168

*18.9 Motion of a Gyroscope. Eulerian Angles 1183

***18.10** Steady Precession of a Gyroscope 1185

*18.11 Motion of an Axisymmetrical Body under No Force 1186

Review and Summary for Chapter 18 1199 Review Problems 1204 Computer Problems 1208

19 MECHANICAL VIBRATIONS

1213

19.1 Introduction 1214

Vibrations without Damping 1214 **19.2** Free Vibrations of Particles. Simple Harmonic Motion 1214 19.3 Simple Pendulum (Approximate Solution) 1218 *19.4 Simple Pendulum (Exact Solution) 1219 19.5 Free Vibrations of Rigid Bodies 1228 **19.6** Application of the Principle of Conservation of Energy 1240 19.7 Forced Vibrations 1251 Damped Vibrations 1261 *19.8 Damped Free Vibrations 1261 *19.9 Damped Forced Vibrations 1264 *19.10 Electrical Analogues 1265 **Review and Summary for Chapter 19** 1277

Review Problems 1282 Computer Problems 1285

Appendix FUNDAMENTALS OF ENGINEERING EXAMINATION

1289

Photo Credits 1291

Index 1293

Answers to Problems 1305