
2C H A P T E R

Statics of Particles

Many engineering problems can be solved by considering the equilibrium of a particle. In this chapter you will learn
that by treating the bollard as a particle, the relation among the tensions in the ropes can be obtained.
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2.1. INTRODUCTION

In this chapter you will study the effect of forces acting on particles.
First you will learn how to replace two or more forces acting on a
given particle by a single force having the same effect as the original
forces. This single equivalent force is the resultant of the original
forces acting on the particle. Later the relations which exist among
the various forces acting on a particle in a state of equilibrium will be
derived and used to determine some of the forces acting on the
particle.

The use of the word particle does not imply that our study will
be limited to that of small corpuscles. What it means is that the size
and shape of the bodies under consideration will not significantly af-
fect the solution of the problems treated in this chapter and that all
the forces acting on a given body will be assumed to be applied at the
same point. Since such an assumption is verified in many practical
applications, you will be able to solve a number of engineering prob-
lems in this chapter.

The first part of the chapter is devoted to the study of forces con-
tained in a single plane, and the second part to the analysis of forces
in three-dimensional space.

FORCES IN A PLANE

2.2. FORCE ON A PARTICLE. RESULTANT OF TWO FORCES

A force represents the action of one body on another and is gener-
ally characterized by its point of application, its magnitude, and its
direction. Forces acting on a given particle, however, have the same
point of application. Each force considered in this chapter will thus
be completely defined by its magnitude and direction.

The magnitude of a force is characterized by a certain number of
units. As indicated in Chap. 1, the SI units used by engineers to mea-
sure the magnitude of a force are the newton (N) and its multiple the
kilonewton (kN), equal to 1000 N, while the U.S. customary units
used for the same purpose are the pound (lb) and its multiple the
kilopound (kip), equal to 1000 lb. The direction of a force is defined
by the line of action and the sense of the force. The line of action is
the infinite straight line along which the force acts; it is characterized
by the angle it forms with some fixed axis (Fig. 2.1).

STATICS OF PARTICLES

2.1 Introduction
Forces in a Plane

2.2 Force on a Particle. Resultant of
Two Forces

2.3 Vectors
2.4 Addition of Vectors
2.5 Resultant of Several Concurrent

Forces
2.6 Resolution of a Force into

Components
2.7 Rectangular Components of a

Force. Unit Vectors
2.8 Addition of Forces by Summing x

and y Components
2.9 Equilibrium of a Particle
2.10 Newton’s First Law of Motion
2.11 Problems Involving the Equilibrium

of a Particle. Free-Body Diagrams
Forces in Space

2.12 Rectangular Components of a
Force in Space

2.13 Force Defined by Its Magnitude
and Two Points on Its Line of
Action

2.14 Addition of Concurrent Forces in
Space

2.15 Equilibrium of a Particle in Space

Fig. 2.1 (a)

A 30°
10 lb

(b)

A 30°
10 lb
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2.3. Vectors 17

Fig. 2.2

The force itself is represented by a segment of that line; through the
use of an appropriate scale, the length of this segment may be cho-
sen to represent the magnitude of the force. Finally, the sense of the
force should be indicated by an arrowhead. It is important in defin-
ing a force to indicate its sense. Two forces having the same magni-
tude and the same line of action but different sense, such as the forces
shown in Fig. 2.1a and b, will have directly opposite effects on a
particle.

Experimental evidence shows that two forces P and Q acting on
a particle A (Fig. 2.2a) can be replaced by a single force R which has
the same effect on the particle (Fig. 2.2c). This force is called the
resultant of the forces P and Q and can be obtained, as shown in
Fig. 2.2b, by constructing a parallelogram, using P and Q as two
adjacent sides of the parallelogram. The diagonal that passes through
A represents the resultant. This method for finding the resultant is
known as the parallelogram law for the addition of two forces. This
law is based on experimental evidence; it cannot be proved or derived
mathematically.

2.3. VECTORS

It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two
forces acting at a right angle to each other, one of 4 lb and the other
of 3 lb, add up to a force of 5 lb, not to a force of 7 lb. Forces are
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later, displacements, velocities, accelerations, and
momenta are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram
law. All these quantities can be represented mathematically by vec-
tors, while those physical quantities which have magnitude but not
direction, such as volume, mass, or energy, are represented by plain
numbers or scalars.

Vectors are defined as mathematical expressions possessing mag-
nitude and direction, which add according to the parallelogram law.
Vectors are represented by arrows in the illustrations and will be dis-
tinguished from scalar quantities in this text through the use of bold-
face type (P). In longhand writing, a vector may be denoted by drawing
a short arrow above the letter used to represent it (P��) or by under-
lining the letter (P

�
). The magnitude of a vector defines the length of

the arrow used to represent the vector. In this text, italic type will be
used to denote the magnitude of a vector. Thus, the magnitude of the
vector P will be denoted by P.

A vector used to represent a force acting on a given particle has
a well-defined point of application, namely, the particle itself. Such a
vector is said to be a fixed, or bound, vector and cannot be moved
without modifying the conditions of the problem. Other physical
quantities, however, such as couples (see Chap. 3), are represented
by vectors which may be freely moved in space; these vectors are
called free vectors. Still other physical quantities, such as forces 

A

P

Q

(a)

A

P
R

Q

(b)

A

R

(c)
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acting on a rigid body (see Chap. 3), are represented by vectors which
can be moved, or slid, along their lines of action; they are known as
sliding vectors.†

Two vectors which have the same magnitude and the same di-
rection are said to be equal, whether or not they also have the same
point of application (Fig. 2.4); equal vectors may be denoted by the
same letter.

The negative vector of a given vector P is defined as a vector
having the same magnitude as P and a direction opposite to that of
P (Fig. 2.5); the negative of the vector P is denoted by �P. The vectors
P and �P are commonly referred to as equal and opposite vectors.
Clearly, we have

P � (�P) � 0

2.4. ADDITION OF VECTORS

We saw in the preceding section that, by definition, vectors add ac-
cording to the parallelogram law. Thus, the sum of two vectors P and
Q is obtained by attaching the two vectors to the same point A and
constructing a parallelogram, using P and Q as two sides of the par-
allelogram (Fig. 2.6). The diagonal that passes through A represents
the sum of the vectors P and Q, and this sum is denoted by P � Q.
The fact that the sign � is used to denote both vector and scalar ad-
dition should not cause any confusion if vector and scalar quantities
are always carefully distinguished. Thus, we should note that the mag-
nitude of the vector P � Q is not, in general, equal to the sum P � Q
of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does
not depend upon the order in which P and Q are selected, we con-
clude that the addition of two vectors is commutative, and we write

P � Q � Q � P (2.1)

18 Statics of Particles

Fig. 2.5

Fig. 2.4

Fig. 2.6

†Some expressions have magnitude and direction, but do not add according to the par-
allelogram law. While these expressions may be represented by arrows, they cannot be con-
sidered as vectors.

A group of such expressions is the finite rotations of a rigid body. Place a closed book
on a table in front of you, so that it lies in the usual fashion, with its front cover up and its
binding to the left. Now rotate it through 180° about an axis parallel to the binding (Fig.
2.3a); this rotation may be represented by an arrow of length equal to 180 units and ori-
ented as shown. Picking up the book as it lies in its new position, rotate it now through 

P

P

P

–P

A

P
P + Q

Q

= =

(a) (b)
180°

180°

Fig. 2.3 Finite rotations of rigid body
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2.4. Addition of Vectors 19From the parallelogram law, we can derive an alternative method
for determining the sum of two vectors. This method, known as the
triangle rule, is derived as follows. Consider Fig. 2.6, where the sum
of the vectors P and Q has been determined by the parallelogram law.
Since the side of the parallelogram opposite Q is equal to Q in mag-
nitude and direction, we could draw only half of the parallelogram
(Fig. 2.7a). The sum of the two vectors can thus be found by arranging
P and Q in tip-to-tail fashion and then connecting the tail of P with
the tip of Q. In Fig. 2.7b, the other half of the parallelogram is con-
sidered, and the same result is obtained. This confirms the fact that
vector addition is commutative.

The subtraction of a vector is defined as the addition of the cor-
responding negative vector. Thus, the vector P � Q representing the
difference between the vectors P and Q is obtained by adding to P
the negative vector �Q (Fig. 2.8). We write

P � Q � P � (�Q) (2.2)

Here again we should observe that, while the same sign is used to de-
note both vector and scalar subtraction, confusion will be avoided if
care is taken to distinguish between vector and scalar quantities.

We will now consider the sum of three or more vectors. The sum
of three vectors P, Q, and S will, by definition, be obtained by first
adding the vectors P and Q and then adding the vector S to the vec-
tor P � Q. We thus write

P � Q � S � (P � Q) � S (2.3)

Similarly, the sum of four vectors will be obtained by adding the fourth
vector to the sum of the first three. It follows that the sum of any
number of vectors can be obtained by applying repeatedly the
parallelogram law to successive pairs of vectors until all the given vec-
tors are replaced by a single vector.

Fig. 2.8

Fig. 2.7

180° about a horizontal axis perpendicular to the binding (Fig. 2.3b); this second rotation
may be represented by an arrow 180 units long and oriented as shown. But the book could
have been placed in this final position through a single 180° rotation about a vertical axis
(Fig. 2.3c). We conclude that the sum of the two 180° rotations represented by arrows di-
rected respectively along the z and x axes is a 180° rotation represented by an arrow di-
rected along the y axis (Fig. 2.3d). Clearly, the finite rotations of a rigid body do not obey
the parallelogram law of addition; therefore, they cannot be represented by vectors.

=
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Photo 2.1 As we have shown, either the parallelo-
gram law or the triangle rule can be used to deter-
mine the resultant force exerted by the two long
cables on the hook.
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If the given vectors are coplanar, that is, if they are contained in
the same plane, their sum can be easily obtained graphically. For this
case, the repeated application of the triangle rule is preferred to the
application of the parallelogram law. In Fig. 2.9 the sum of three vec-
tors P, Q, and S was obtained in that manner. The triangle rule was
first applied to obtain the sum P � Q of the vectors P and Q; it was
applied again to obtain the sum of the vectors P � Q and S. The
determination of the vector P � Q, however, could have been omit-
ted and the sum of the three vectors could have been obtained directly,
as shown in Fig. 2.10, by arranging the given vectors in tip-to-tail
fashion and connecting the tail of the first vector with the tip of the
last one. This is known as the polygon rule for the addition of vectors.

We observe that the result obtained would have been unchanged
if, as shown in Fig. 2.11, the vectors Q and S had been replaced by
their sum Q � S. We may thus write

P � Q � S � (P � Q) � S � P � (Q � S) (2.4)

which expresses the fact that vector addition is associative. Recalling
that vector addition has also been shown, in the case of two vectors,
to be commutative, we write

P � Q � S � (P � Q) � S � S � (P � Q)
� S � (Q � P) � S � Q � P

(2.5)

This expression, as well as others which may be obtained in the same
way, shows that the order in which several vectors are added together
is immaterial (Fig. 2.12).

Product of a Scalar and a Vector. Since it is convenient to
denote the sum P � P by 2P, the sum P � P � P by 3P, and, in gen-
eral, the sum of n equal vectors P by the product nP, we will define
the product nP of a positive integer n and a vector P as a vector hav-
ing the same direction as P and the magnitude nP. Extending this def-
inition to include all scalars, and recalling the definition of a negative
vector given in Sec. 2.3, we define the product kP of a scalar k and a
vector P as a vector having the same direction as P (if k is positive),
or a direction opposite to that of P (if k is negative), and a magnitude
equal to the product of P and of the absolute value of k (Fig. 2.13).

2.5. RESULTANT OF SEVERAL CONCURRENT FORCES

Consider a particle A acted upon by several coplanar forces, that is,
by several forces contained in the same plane (Fig. 2.14a). Since the
forces considered here all pass through A, they are also said to be con-
current. The vectors representing the forces acting on A may be added
by the polygon rule (Fig. 2.14b). Since the use of the polygon rule is
equivalent to the repeated application of the parallelogram law, the
vector R thus obtained represents the resultant of the given concur-
rent forces, that is, the single force which has the same effect on the
particle A as the given forces. As indicated above, the order in which
the vectors P, Q, and S representing the given forces are added
together is immaterial.

20 Statics of Particles

Fig. 2.10

Fig. 2.9

Fig. 2.11

Fig. 2.12

Fig. 2.13
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2.6. Resolution of a Force into Components 21

2.6. RESOLUTION OF A FORCE INTO COMPONENTS

We have seen that two or more forces acting on a particle may be re-
placed by a single force which has the same effect on the particle.
Conversely, a single force F acting on a particle may be replaced by
two or more forces which, together, have the same effect on the par-
ticle. These forces are called the components of the original force
F, and the process of substituting them for F is called resolving the
force F into components.

Clearly, for each force F there exist an infinite number of possi-
ble sets of components. Sets of two components P and Q are the most
important as far as practical applications are concerned. But, even
then, the number of ways in which a given force F may be resolved
into two components is unlimited (Fig. 2.15). Two cases are of par-
ticular interest:

1. One of the Two Components, P, Is Known. The second com-
ponent, Q, is obtained by applying the triangle rule and join-
ing the tip of P to the tip of F (Fig. 2.16); the magnitude and
direction of Q are determined graphically or by trigonome-
try. Once Q has been determined, both components P and
Q should be applied at A.

2. The Line of Action of Each Component Is Known. The mag-
nitude and sense of the components are obtained by apply-
ing the parallelogram law and drawing lines, through the tip
of F, parallel to the given lines of action (Fig. 2.17). This
process leads to two well-defined components, P and Q,
which can be determined graphically or computed trigono-
metrically by applying the law of sines.

Many other cases can be encountered; for example, the direction
of one component may be known, while the magnitude of the other
component is to be as small as possible (see Sample Prob. 2.2). In all
cases the appropriate triangle or parallelogram which satisfies the
given conditions is drawn.

Fig. 2.14

Fig. 2.15

Fig. 2.16

Fig. 2.17
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SAMPLE PROBLEM 2.1

The two forces P and Q act on a bolt A. Determine their resultant.

SOLUTION

Graphical Solution. A parallelogram with sides equal to P and Q is
drawn to scale. The magnitude and direction of the resultant are measured
and found to be

R � 98 N � � 35° R � 98 N a35°

The triangle rule may also be used. Forces P and Q are drawn in tip-to-tail
fashion. Again the magnitude and direction of the resultant are measured.

R � 98 N � � 35° R � 98 N a35°

Trigonometric Solution. The triangle rule is again used; two sides
and the included angle are known. We apply the law of cosines.

R2 � P2 � Q2 � 2PQ cos B
R2 � (40 N)2 � (60 N)2 � 2(40 N)(60 N) cos 155°
R � 97.73 N

Now, applying the law of sines, we write

�
sin

Q
A

� � �
sin

R
B

� �
s
6
i
0
n

N
A

� � �
s
9
i
7
n
.7
1
3
55

N
°

� (1)

Solving Eq. (1) for sin A, we have

sin A ��
(60

9
N
7
)
.7

s
3
in

N
155°

�

Using a calculator, we first compute the quotient, then its arc sine, and
obtain

A � 15.04° � � 20° � A � 35.04°

We use 3 significant figures to record the answer (see Sec. 1.6):

R � 97.7 N a35.0°

Alternative Trigonometric Solution. We construct the right trian-
gle BCD and compute

CD � (60 N) sin 25° � 25.36 N
BD � (60 N) cos 25° � 54.38 N

Then, using triangle ACD, we obtain

tan A � �
2
9
5
4
.
.
3
3
6
8

N
N

� A � 15.04°

R � �
2
si
5
n
.3

A
6

� R � 97.73 N

Again, � � 20° � A � 35.04° R � 97.7 N a35.0°

22

25°

20°
A

Q = 60 N

P = 40 N

A
P

Q

R

a

A
P

Q

R

�

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

25°

20°

= 60 NQ
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25.36
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SAMPLE PROBLEM 2.2

A barge is pulled by two tugboats. If the resultant of the forces exerted by
the tugboats is a 5000-N force directed along the axis of the barge, deter-
mine (a) the tension in each of the ropes knowing that � � 45°, (b) the value
of � for which the tension in rope 2 is minimum.

SOLUTION

a. Tension for � � 45°. Graphical Solution. The parallelogram
law is used; the diagonal (resultant) is known to be equal to 5000 lb and to
be directed to the right. The sides are drawn parallel to the ropes. If the
drawing is done to scale, we measure

T1 � 3700 N T2 � 2600 N

Trigonometric Solution. The triangle rule can be used. We note that
the triangle shown represents half of the parallelogram shown above. Using
the law of sines. we write

�
sin

T
4
1

5°
� � �

sin
T

3
2

0°
� � �

s
5
in
00

1
0
0
N

5°
�

With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

T1 � 3660 N T2 � 2590 N

b. Value of � for Minimum T2. To determine the value of � for
which the tension in rope 2 is minimum, the triangle rule is again used. In
the sketch shown, line 1-1� is the known direction of T1. Several possible di-
rections of T2 are shown by the lines 2-2�. We note that the minimum value
of T2 occurs when T1 and T2 are perpendicular. The minimum value of T2

is

T2 � (5000 N) sin 30° � 2500 N

Corresponding values of T1 and � are

T1 � (5000 N) cos 30° � 4330 N
� � 90° � 30° � � 60°

23

30°
1

2
a

A
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B

30° 45°

30°45°

5000 N
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T2

B

45° 30°

5000 N

105°
T1

T2

B

1

2
2

2

5000 N
1'

2'

2'

2'

30°

5000 N

T1
T2 90°

a
B

T T1 2

45 30
5000

sin sin°
=

°
=

°
N

sin 105
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

The preceding sections were devoted to introducing and applying the parallelogram
law for the addition of vectors.

You will now be asked to solve problems on your own. Some may resemble one of
the sample problems; others may not. What all problems and sample problems in
this section have in common is that they can be solved by the direct application of
the parallelogram law.

Your solution of a given problem should consist of the following steps:

1. Identify which of the forces are the applied forces and which is the re-
sultant. It is often helpful to write the vector equation which shows how the forces 
are related. For example, in Sample Prob. 2.1 we would have

R � P � Q

You should keep that relation in mind as you formulate the next part of your 
solution.

2. Draw a parallelogram with the applied forces as two adjacent sides and 
the resultant as the included diagonal (Fig. 2.2). Alternatively, you can use the 
triangle rule, with the applied forces drawn in tip-to-tail fashion and the resultant 
extending from the tail of the first vector to the tip of the second (Fig. 2.7).

3. Indicate all dimensions. Using one of the triangles of the parallelogram, or
the triangle constructed according to the triangle rule, indicate all dimensions—
whether sides or angles—and determine the unknown dimensions either graphi-
cally or by trigonometry. If you use trigonometry, remember that the law of cosines
should be applied first if two sides and the included angle are known [Sample Prob.
2.1], and the law of sines should be applied first if one side and all angles are known
[Sample Prob. 2.2].

As is evident from the figures of Sec. 2.6, the two components of a force need not
be perpendicular. Thus, when asked to resolve a force into two components, it is
essential that you align the two adjacent sides of your parallelogram with the spec-
ified lines of action of the components.

If you have had prior exposure to mechanics, you might be tempted to ignore the
solution techniques of this lesson in favor of resolving the forces into rectangular
components. While this latter method is important and will be considered in the
next section, use of the parallelogram law simplifies the solution of many problems
and should be mastered at this time.
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25

Problems†

2.1 Two forces P and Q are applied as shown at point A of a hook
support. Knowing that P � 15 N and Q � 25 N, determine graphically the
magnitude and direction of their resultant using (a) the parallelogram law,
(b) the triangle rule.

2.2 Two forces P and Q are applied as shown at point A of a hook
support. Knowing that P � 45 N and Q � 15 N, determine graphically the
magnitude and direction of their resultant using (a) the parallelogram law,
(b) the triangle rule.

2.3 Two forces are applied to an eye bolt fastened to a beam. Deter-
mine graphically the magnitude and direction of their resultant using (a) the
parallelogram law, (b) the triangle rule.

15°
30°

A

P
Q

8 kN

5 kN

50°

25°

Fig. P2.3

Fig. P2.4

Fig. P2.1 and P2.2

Fig. P2.5 and P2.6

2.4 A disabled automobile is pulled by means of ropes subjected to
the two forces as shown. Determine graphically the magnitude and direction
of their resultant using (a) the parallelogram law, (b) the triangle rule.

2.5 The 200-N force is to be resolved into components along lines a-a�
and b-b�. (a) Determine the angle � using trigonometry knowing that the
component along a-a� is to be 150 N. (b) What is the corresponding value
of the component along b-b�?

2.6 The 200-N force is to be resolved into components along lines a-a�
and b-b�. (a) Determine the angle � using trigonometry knowing that the
component along b-b� is to be 120 N. (b) What is the corresponding value
of the component along a-a�?

2.7 Two forces are applied as shown to a hook support. Using trigonom-
etry and knowing that the magnitude of P is 600 N, determine (a) the required
angle � if the resultant R of the two forces applied to the support is to be
vertical, (b) the corresponding magnitude of R.

C

B

25°

30°

4 kN

2 kN

A

200 N45°

a
b

a' b'

a

†Answers to all problems set in straight type (such as 2.1) are given at the end of the
book. Answers to problems with a number set in italic type (such as 2.3) are not given. Fig. P2.7

45°

900 N

α

P
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26 Statics of Particles 2.8 Two control rods are attached at A to lever AB. Using trigonome-
try and knowing that the force in the left-hand rod is F1 � 30 N, determine
(a) the required force F2 in the right-hand rod if the resultant R of the forces
exerted by the rods on the lever is to be vertical, (b) the corresponding mag-
nitude of R.

2.9 Two control rods are attached at A to lever AB. Using trigonome-
try and knowing that the force in the right-hand rod is F2 � 20 N, determine
(a) the required force F1 in the left-hand rod if the resultant R of the forces
exerted by the rods on the lever is to be vertical, (b) the corresponding mag-
nitude of R.

2.10 An elastic exercise band is grasped and then is stretched as shown.
Knowing that the tensions in portions BC and DE of the band are 80 N and
60 N, respectively, determine, using trigonometry, (a) the required angle � if
the resultant R of the two forces exerted on the hand at A is to be vertical,
(b) the corresponding magnitude of R.

2.11 To steady a sign as it is being lowered, two cables are attached
to the sign at A. Using trigonometry and knowing that � � 25°, determine
(a) the required magnitude of the force P if the resultant R of the two forces
applied at A is to be vertical, (b) the corresponding magnitude of R.

2.12 To steady a sign as it is being lowered, two cables are attached
to the sign at A. Using trigonometry and knowing that the magnitude of P is
70 N, determine (a) the required angle � if the resultant R of the two forces
applied at A is to be vertical, (b) the corresponding magnitude of R.

vfzsvfnjd 
gfhopsuituhb 

opv9 fuvhP

P
80 N

35° a

A

2.13 As shown in Fig. P2.11, two cables are attached to a sign at A to
steady the sign as it is being lowered. Using trigonometry, determine (a) the
magnitude and direction of the smallest force P for which the resultant R of
the two forces applied at A is vertical, (b) the corresponding magnitude of R.

2.14 As shown in Fig. P2.10, an elastic exercise band is grasped and
then is stretched. Knowing that the tension in portion DE of the band is
70 N, determine, using trigonometry, (a) the magnitude and direction of the
smallest force in portion BC of the band for which the resultant R of the two
forces exerted on the hand at A is directed along a line joining points A and
H, (b) the corresponding magnitude of R.

2.15 Solve Prob. 2.1 using trigonometry.

2.16 Solve Prob. 2.2 using trigonometry.

2.17 Solve Prob. 2.3 using trigonometry.

Fig. P2.10

Fig. P2.11 and P2.12

28°
10°

A

B

F1

F2

Fig. P2.8 and P2.9

6°

10°

H

B

A

D

C E

α
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2.7. Rectangular Components of a Force. Unit
Vectors

2.18 For the hook support of Prob. 2.7, determine, using trigonom-
etry, the magnitude and direction of the resultant of the two forces applied
to the support knowing that P � 500 N and � � 60°.

2.19 Two structural members A and B are bolted to a bracket as shown.
Knowing that both members are in compression and that the force is 30 kN
in member A and 20 kN in member B, determine, using trigonometry, the
magnitude and direction of the resultant of the forces applied to the bracket
by members A and B.

2.20 Two structural members A and B are bolted to a bracket as shown.
Knowing that both members are in compression and that the force is 20 kN
in member A and 30 kN in member B, determine, using trigonometry, the
magnitude and direction of the resultant of the forces applied to the bracket
by members A and B.

2.7. RECTANGULAR COMPONENTS OF A FORCE. UNIT
VECTORS†

In many problems it will be found desirable to resolve a force into
two components which are perpendicular to each other. In Fig. 2.18,
the force F has been resolved into a component Fx along the x axis
and a component Fy along the y axis. The parallelogram drawn to
obtain the two components is a rectangle, and Fx and Fy are called
rectangular components.

Fig. 2.18 Fig. 2.19

The x and y axes are usually chosen horizontal and vertical, re-
spectively, as in Fig. 2.18; they may, however, be chosen in any two
perpendicular directions, as shown in Fig. 2.19. In determining the
rectangular components of a force, the student should think of the
construction lines shown in Figs. 2.18 and 2.19 as being parallel to
the x and y axes, rather than perpendicular to these axes. This prac-
tice will help avoid mistakes in determining oblique components as in
Sec. 2.6.

A B

45° 25°

O

F
Fy

Fx
x

y

�

Fy
Fx

F
x

y

O

�

Fig. P2.19 and P2.20

†The properties established in Secs. 2.7 and 2.8 may be readily extended to the rectan-
gular components of any vector quantity.

27

bee76985_ch02_15-72  5/9/07  12:06 PM  Page 27



Two vectors of unit magnitude, directed respectively along the
positive x and y axes, will be introduced at this point. These vectors
are called unit vectors and are denoted by i and j, respectively (Fig.
2.20). Recalling the definition of the product of a scalar and a vector
given in Sec. 2.4, we note that the rectangular components Fx and Fy

of a force F may be obtained by multiplying respectively the unit vec-
tors i and j by appropriate scalars (Fig. 2.21). We write

Fx � Fxi Fy � Fyj (2.6)

and

F � Fxi � Fyj (2.7)

While the scalars Fx and Fy may be positive or negative, depending
upon the sense of Fx and of Fy, their absolute values are respectively
equal to the magnitudes of the component forces Fx and Fy. The
scalars Fx and Fy are called the scalar components of the force F,
while the actual component forces Fx and Fy should be referred to
as the vector components of F. However, when there exists no possi-
bility of confusion, the vector as well as the scalar components of
F may be referred to simply as the components of F. We note that
the scalar component Fx is positive when the vector component Fx

has the same sense as the unit vector i (that is, the same sense as the
positive x axis) and is negative when Fx has the opposite sense. A
similar conclusion may be drawn regarding the sign of the scalar com-
ponent Fy.

Denoting by F the magnitude of the force F and by � the angle
between F and the x axis, measured counterclockwise from the pos-
itive x axis (Fig. 2.21), we may express the scalar components of F as
follows:

Fx � F cos � Fy � F sin � (2.8)

We note that the relations obtained hold for any value of the angle �
from 0° to 360° and that they define the signs as well as the absolute
values of the scalar components Fx and Fy.

Example 1. A force of 800 N is exerted on a bolt A as shown in Fig.
2.22a. Determine the horizontal and vertical components of the force.

In order to obtain the correct sign for the scalar components Fx and Fy,
the value 180° � 35° � 145° should be substituted for � in Eqs. (2.8). How-
ever, it will be found more practical to determine by inspection the signs of
Fx and Fy (Fig. 2.22b) and to use the trigonometric functions of the angle
� � 35°. We write, therefore,

Fx � �F cos � � �(800 N) cos 35° � �655 N
Fy � �F sin � � �(800 N) sin 35° � �459 N

The vector components of F are thus

Fx � �(655 N)i Fy � �(459 N)j

and we may write F in the form

F � �(655 N)i � (459 N)j

28 Statics of Particles

Fig. 2.20

Fig. 2.21

Fig. 2.22

x

y

Magnitude = 1j

i

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

F = 800 N

F = 800 N

35º

A

A

(a)

(b)

x

y

Fy

Fx

� = 35º

� = 145º
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Example 2. A man pulls with a force of 300 N on a rope attached to
a building, as shown in Fig. 2.23a. What are the horizontal and vertical com-
ponents of the force exerted by the rope at point A?

It is seen from Fig. 2.23b that

Fx � �(300 N) cos � Fy � �(300 N) sin �

Observing that AB � 10 m, we find from Fig. 2.23a

cos � � � � sin � � � �

We thus obtain

Fx � �(300 N)�
4
5

� � �240 N Fy � �(300 N)�
3
5

� � �180 N

and write

F � (240 N)i � (180 N)j

When a force F is defined by its rectangular components Fx and
Fy (see Fig. 2.21), the angle � defining its direction can be obtained
by writing

tan � � �
F
F

y

x
� (2.9)

The magnitude F of the force can be obtained by applying the
Pythagorean theorem and writing

F � �Fx
2 � F�2

y� (2.10)

or by solving for F one of the Eqs. (2.8).

Example 3. A force F � (700 N)i � (1500 N)j is applied to a bolt A.
Determine the magnitude of the force and the angle � it forms with the
horizontal.

First we draw a diagram showing the two rectangular components of the
force and the angle � (Fig. 2.24). From Eq. (2.9), we write

tan � � �

Using a calculator,† we enter 1500 N and divide by 700 N; computing
the arc tangent of the quotient, we obtain � � 65.0°. Solving the second of
Eqs. (2.8) for F, we have

F � � � 1655 N

The last calculation is facilitated if the value of Fy is stored when originally
entered; it may then be recalled to be divided by sin �.

1500 N
�
sin 65.0°

Fy
�
sin �

1500 N
�
700 N

Fy
�
Fx

3
�
5

6 m
�
10 m

6 m
�
AB

4
�
5

8 m
�
10 m

8 m
�
AB

2.7. Rectangular Components of a Force. Unit
Vectors

†It is assumed that the calculator used has keys for the computation of trigonometric
and inverse trigonometric functions. Some calculators also have keys for the direct con-
version of rectangular coordinates into polar coordinates, and vice versa. Such calculators
eliminate the need for the computation of trigonometric functions in Examples 1, 2, and 3
and in problems of the same type.

Fig. 2.23

Fig. 2.24

(a)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

�

�

�

y

A x

y

F

Fx = (700 lb) i

F
y 

= 
(1

50
0 

lb
)j

�
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30 Statics of Particles 2.8. ADDITION OF FORCES BY SUMMING X AND Y
COMPONENTS

It was seen in Sec. 2.2 that forces should be added according to the
parallelogram law. From this law, two other methods, more readily
applicable to the graphical solution of problems, were derived in
Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and
the polygon rule for the addition of three or more forces. It was also
seen that the force triangle used to define the resultant of two forces
could be used to obtain a trigonometric solution.

When three or more forces are to be added, no practical trigono-
metric solution can be obtained from the force polygon which defines
the resultant of the forces. In this case, an analytic solution of the
problem can be obtained by resolving each force into two rectangu-
lar components. Consider, for instance, three forces P, Q, and S act-
ing on a particle A (Fig. 2.25a). Their resultant R is defined by the
relation

R � P � Q � S (2.11)

Resolving each force into its rectangular components, we write

Rxi � Ryj � Pxi � Pyj � Qxi � Qyj � Sxi � Syj
� (Px � Qx � Sx)i � (Py � Qy � Sy)j

from which it follows that

Rx � Px � Qx � Sx Ry � Py � Qy � Sy (2.12)

or, for short,

Rx � �Fx Ry � �Fy (2.13)

We thus conclude that the scalar components Rx and Ry of the re-
sultant R of several forces acting on a particle are obtained by adding
algebraically the corresponding scalar components of the given
forces.†

In practice, the determination of the resultant R is carried out in
three steps as illustrated in Fig. 2.25. First the given forces shown in
Fig. 2.25a are resolved into their x and y components (Fig. 2.25b).
Adding these components, we obtain the x and y components of R
(Fig. 2.25c). Finally, the resultant R � Rxi � Ryj is determined by ap-
plying the parallelogram law (Fig. 2.25d). The procedure just de-
scribed will be carried out most efficiently if the computations are
arranged in a table. While it is the only practical analytic method for
adding three or more forces, it is also often preferred to the trigono-
metric solution in the case of the addition of two forces.

Fig. 2.25

†Clearly, this result also applies to the addition of other vector quantities, such as ve-
locities, accelerations, or momenta.

(b)

(c)

S

P

Q

A

A

(a)

(d )

A

R

q

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i
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SAMPLE PROBLEM 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces on
the bolt.

SOLUTION

The x and y components of each force are determined by trigonometry as
shown and are entered in the table below. According to the convention
adopted in Sec. 2.7, the scalar number representing a force component is
positive if the force component has the same sense as the corresponding
coordinate axis. Thus, x components acting to the right and y components
acting upward are represented by positive numbers.

Force Magnitude, N x Component, N y Component, N

F1 150 �129.9 �75.0
F2 80 �27.4 �75.2
F3 110 0 �110.0
F4 100 �96.6 �25.9

Rx � �199.1 Ry � �14.3

Thus, the resultant R of the four forces is

R � Rxi � Ryj R � (199.1 N)i � (14.3 N)j

The magnitude and direction of the resultant may now be determined.
From the triangle shown, we have

tan � � � � � 4.1°

R � �
1
s
4
i
.
n
3

�

N
� � 199.6 N R � 199.6 N a4.1°

With a calculator, the last computation may be facilitated if the value of
Ry is stored when originally entered; it may then be recalled to be divided
by sin �. (Also see the footnote on p. 29.)

14.3 N
�
199.1 N

Ry
�
Rx

31

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j

R

Ry = (14.3 N) j Rx = (199.1 N) i

a
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

You saw in the preceding lesson that the resultant of two forces can be determined either
graphically or from the trigonometry of an oblique triangle.

A. When three or more forces are involved, the determination of their resultant R is
best carried out by first resolving each force into rectangular components. Two cases may
be encountered, depending upon the way in which each of the given forces is defined:

Case 1. The force F is defined by its magnitude F and the angle � it forms with
the x axis. The x and y components of the force can be obtained by multiplying F by cos �
and sin �, respectively [Example 1].

Case 2. The force F is defined by its magnitude F and the coordinates of two points
A and B on its line of action (Fig. 2.23). The angle � that F forms with the x axis may
first be determined by trigonometry. However, the components of F may also be obtained
directly from proportions among the various dimensions involved, without actually deter-
mining � [Example 2].

B. Rectangular components of the resultant. The components Rx and Ry of the re-
sultant can be obtained by adding algebraically the corresponding components of the given
forces [Sample Prob. 2.3].

You can express the resultant in vectorial form using the unit vectors i and j, which are di-
rected along the x and y axes, respectively:

R � Rxi � Ryj

Alternatively, you can determine the magnitude and direction of the resultant by solving the
right triangle of sides Rx and Ry for R and for the angle that R forms with the x axis.

In the examples and sample problem of this lesson, the x and y axes were horizontal and
vertical, respectively. You should remember, however, that for some problems it will be more
efficient to rotate the axes to align them with one or more of the applied forces.
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Problems

2.21 Determine the x and y components of each of the forces shown.

2.22 Determine the x and y components of each of the forces shown.

2.23 and 2.24 Determine the x and y components of each of the
forces shown.

2.25 Member BD exerts on member ABC a force P directed along
line BD. Knowing that P must have a 960-N vertical component, determine
(a) the magnitude of the force P, (b) its horizontal component.

Fig. P2.22

Fig. P2.21

Fig. P2.23

Fig. P2.24

2.4 kN

1.85 kN

1.40 kN

20°

30°

y

x
35°

390 N

610 NO x

y

110 mm

250 mm300 mm

160 mm 600 mm

680 N

Fig. P2.25

35°
Q

D

A B C

212 N204 N

400 N x

y

48 cm 56 cm

90 cm

80 cm

60 cm

O

20°

y

x

50°

40°

5 kN

7 kN

9 kN
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2.26 While emptying a wheelbarrow, a gardener exerts on each han-
dle AB a force P directed along line CD. Knowing that P must have a 30-N
horizontal component, determine (a) the magnitude of the force P, (b) its
vertical component.

2.27 Activator rod AB exerts on crank BCD a force P directed along
line AB. Knowing that P must have a 100-N component perpendicular to
arm BC of the crank, determine (a) the magnitude of the force P, (b) its
component along line BC.

Fig. P2.28

Fig. P2.27

Fig. P2.29 and P2.30

50° 50°

Q

B

C

A

l l

A
35°

B

C
D

E

40°

2.29 A window pole is used to open a window as shown. Knowing that
the pole exerts on the window a force P directed along the pole and that the
magnitude of the vertical component of P is 45 N, determine (a) the mag-
nitude of the force P, (b) its horizontal component.

2.30 A window pole is used to open a window as shown. Knowing that
the pole exerts on the window a force P directed along the pole and that the
magnitude of the horizontal component of P is 18 N, determine (a) the mag-
nitude of the force P, (b) its vertical component.

2.31 Determine the resultant of the three forces of Prob. 2.21.

2.32 Determine the resultant of the three forces of Prob. 2.22.

2.33 Determine the resultant of the three forces of Prob. 2.24.

2.34 Determine the resultant of the three forces of Prob. 2.23.

2.35 Knowing that the tension in cable BC is 145 N, determine the
resultant of the three forces exerted at point B of beam AB.Fig. P2.35

A

D

B

C

40°

Fig. P2.26
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20°

A

B

84 m

80 m

100 N

156 N3
45 12

13
5A

B

C

L = 116 m

2.28 Member CB of the vise shown exerts on block B a force P di-
rected along line CB. Knowing that P must have a 260-N horizontal compo-
nent, determine (a) the magnitude of the force P, (b) its vertical component.
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2.37 Knowing that � � 65°, determine the resultant of the three forces
shown.

2.38 Knowing that � � 50°, determine the resultant of the three forces
shown.

2.39 For the beam of Prob. 2.35, determine (a) the required tension
in cable BC if the resultant of the three forces exerted at point B is to be
vertical, (b) the corresponding magnitude of the resultant.

2.40 For the three forces of Prob. 2.38, determine (a) the required
value of � if the resultant is to be vertical, (b) the corresponding magnitude
of the resultant.

2.41 For the block of Prob. 2.37, determine (a) the required value of
� if the resultant of the three forces shown is to be parallel to the incline,
(b) the corresponding magnitude of the resultant.

2.42 Boom AB is held in the position shown by three cables. Know-
ing that the tensions in cables AC and AD are 900 N and 1200 N, respec-
tively, determine (a) the tension in cable AE if the resultant of the tensions
exerted at point A of the boom must be directed along AB, (b) the corre-
sponding magnitude of the resultant.

2.9. EQUILIBRIUM OF A PARTICLE

In the preceding sections, we discussed the methods for determining
the resultant of several forces acting on a particle. Although it has not
occurred in any of the problems considered so far, it is quite possible
for the resultant to be zero. In such a case, the net effect of the given
forces is zero, and the particle is said to be in equilibrium. We thus
have the following definition: When the resultant of all the forces
acting on a particle is zero, the particle is in equilibrium.

A particle which is acted upon by two forces will be in equilib-
rium if the two forces have the same magnitude and the same line of
action but opposite sense. The resultant of the two forces is then zero.
Such a case is shown in Fig. 2.26.

30°

B E

A

D

C

50°65°

Fig. P2.36

Fig. P2.42

A

100 N

100 N

Fig. 2.26
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Fig. P2.37

600 N

400 N

300 N

a

a'

α
α

20°
130 N

α

α
70 N

90 N

35°

a a

700 N

300 N

600 N

Fig. P2.38

2.36 A collar that can slide on a vertical rod is subjected to the three
forces shown. Determine (a) the value of the angle � for which the resultant of
the three forces is horizontal, (b) the corresponding magnitude of the resultant.
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Another case of equilibrium of a particle is represented in Fig.
2.27, where four forces are shown acting on A. In Fig. 2.28, the
resultant of the given forces is determined by the polygon rule. Start-
ing from point O with F1 and arranging the forces in tip-to-tail fashion,
we find that the tip of F4 coincides with the starting point O. Thus
the resultant R of the given system of forces is zero, and the particle
is in equilibrium.

The closed polygon drawn in Fig. 2.28 provides a graphical ex-
pression of the equilibrium of A. To express algebraically the condi-
tions for the equilibrium of a particle, we write

R � �F � 0 (2.14)

Resolving each force F into rectangular components, we have

�(Fxi � Fyj) � 0 or (�Fx)i � (�Fy)j � 0

We conclude that the necessary and sufficient conditions for the equi-
librium of a particle are

�Fx � 0 �Fy � 0 (2.15)

Returning to the particle shown in Fig. 2.27, we check that the equi-
librium conditions are satisfied. We write

�Fx � 300 N � (200 N) sin 30° � (400 N) sin 30°
� 300 N � 100 N � 200 N � 0

�Fy � �173.2 N � (200 N) cos 30° � (400 N) cos 30°
� �173.2 N � 173.2 N � 346.4 N � 0

2.10. NEWTON’S FIRST LAW OF MOTION

In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:

If the resultant force acting on a particle is zero, the particle will
remain at rest (if originally at rest) or will move with constant speed
in a straight line (if originally in motion).

From this law and from the definition of equilibrium given in
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or is
moving in a straight line with constant speed. In the following section,
various problems concerning the equilibrium of a particle will be 
considered.

2.11. PROBLEMS INVOLVING THE EQUILIBRIUM 
OF A PARTICLE. FREE-BODY DIAGRAMS

In practice, a problem in engineering mechanics is derived from an
actual physical situation. A sketch showing the physical conditions of
the problem is known as a space diagram.

The methods of analysis discussed in the preceding sections apply
to a system of forces acting on a particle. A large number of prob-
lems involving actual structures, however, can be reduced to problems
concerning the equilibrium of a particle. This is done by choosing a
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Fig. 2.27

Fig. 2.28

A

F1 = 300 N

F2 = 173.2 N

F4 = 400 N

F3 = 200 N

30º

30º

F4 = 400 N

F1 = 300 N

F3 = 200 N

F2 = 173.2 N

O
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significant particle and drawing a separate diagram showing this
particle and all the forces acting on it. Such a diagram is called a free-
body diagram.

As an example, consider the 75-kg crate shown in the space dia-
gram of Fig. 2.29a. This crate was lying between two buildings, and
it is now being lifted onto a truck, which will remove it. The crate is
supported by a vertical cable, which is joined at A to two ropes which
pass over pulleys attached to the buildings at B and C. It is desired
to determine the tension in each of the ropes AB and AC.

In order to solve this problem, a free-body diagram showing a
particle in equilibrium must be drawn. Since we are interested in the
rope tensions, the free-body diagram should include at least one of
these tensions or, if possible, both tensions. Point A is seen to be a
good free body for this problem. The free-body diagram of point A
is shown in Fig. 2.29b. It shows point A and the forces exerted on A
by the vertical cable and the two ropes. The force exerted by the cable
is directed downward, and its magnitude is equal to the weight W of
the crate. Recalling Eq. (1.4), we write

W � mg � (75 kg)(9.81 m/s2) � 736 N

and indicate this value in the free-body diagram. The forces exerted
by the two ropes are not known. Since they are respectively equal in
magnitude to the tensions in rope AB and rope AC, we denote them
by TAB and TAC and draw them away from A in the directions shown
in the space diagram. No other detail is included in the free-body
diagram.

Since point A is in equilibrium, the three forces acting on it must
form a closed triangle when drawn in tip-to-tail fashion. This force
triangle has been drawn in Fig. 2.29c. The values TAB and TAC of the
tension in the ropes may be found graphically if the triangle is drawn
to scale, or they may be found by trigonometry. If the latter method
of solution is chosen, we use the law of sines and write

� �

TAB � 647 N TAC � 480 N

When a particle is in equilibrium under three forces, the problem
can be solved by drawing a force triangle. When a particle is in equi-
librium under more than three forces, the problem can be solved
graphically by drawing a force polygon. If an analytic solution is de-
sired, the equations of equilibrium given in Sec. 2.9 should be solved:

�Fx � 0 �Fy � 0 (2.15)

These equations can be solved for no more than two unknowns; sim-
ilarly, the force triangle used in the case of equilibrium under three
forces can be solved for two unknowns.

The more common types of problems are those in which the two
unknowns represent (1) the two components (or the magnitude and
direction) of a single force, (2) the magnitudes of two forces, each of
known direction. Problems involving the determination of the maxi-
mum or minimum value of the magnitude of a force are also en-
countered (for example, see Probs. 2.59 through 2.63).

736 N
�
sin 80°

TAC�
sin 40°

TAB�
sin 60°

2.11. Problems Involving the Equilibrium of a
Particle. Free-Body Diagrams

Fig. 2.29

TAB
TAC

A

A

B

C

50º 30º

50º 30º

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40º

60º
80º
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Photo 2.2 As illustrated in the above example, it
is possible to determine the tensions in the cables
supporting the shaft shown by treating the hook as
a particle and then applying the equations of
equilibrium to the forces acting on the hook.
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SAMPLE PROBLEM 2.4

In a ship-unloading operation, a 3500-N automobile is supported by a cable.
A rope is tied to the cable at A and pulled in order to center the automobile
over its intended position. The angle between the cable and the vertical is
2°, while the angle between the rope and the horizontal is 30°. What is the
tension in the rope?

SOLUTION

Free-Body Diagram. Point A is chosen as a free body, and the com-
plete free-body diagram is drawn. TAB is the tension in the cable AB, and
TAC is the tension in the rope.

Equilibrium Condition. Since only three forces act on the free body,
we draw a force triangle to express that it is in equilibrium. Using the law of
sines, we write

� �

With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 120° and sin 2°, we obtain

TAB � 3570 N TAC � 144 N

3500 N
�
sin 58°

TAC�
sin 2°

TAB�
sin 120°

SAMPLE PROBLEM 2.5

Determine the magnitude and direction of the smallest force F which will
maintain the package shown in equilibrium. Note that the force exerted by
the rollers on the package is perpendicular to the incline.

SOLUTION

Free-Body Diagram. We choose the package as a free body, assum-
ing that it can be treated as a particle. We draw the corresponding free-body
diagram.

Equilibrium Condition. Since only three forces act on the free body,
we draw a force triangle to express that it is in equilibrium. Line 1-1� rep-
resents the known direction of P. In order to obtain the minimum value of
the force F, we choose the direction of F perpendicular to that of P. From
the geometry of the triangle obtained, we find

F � (294 N) sin 15° � 76.1 N � � 15°
F � 76.1 N b15°

2°

30°
A

C

B

TAB

TAC

TAB

TAC

2°

2°

30°
A

3500 N

3500 N

120°

58°

15°

30 kg F
�

F

P

15°

1

1'

294 N

�

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

�
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SAMPLE PROBLEM 2.6

As part of the design of a new sailboat, it is desired to determine the drag
force which may be expected at a given speed. To do so, a model of the pro-
posed hull is placed in a test channel and three cables are used to keep its
bow on the centerline of the channel. Dynamometer readings indicate that
for a given speed, the tension is 40 N in cable AB and 60 N in cable AE.
Determine the drag force exerted on the hull and the tension in cable AC.

SOLUTION

Determination of the Angles. First, the angles � and � defining the
direction of cables AB and AC are determined. We write

tan � � � 1.75 tan � � � 0.375

� � 60.26° � � 20.56°

Free-Body Diagram. Choosing the hull as a free body, we draw the
free-body diagram shown. It includes the forces exerted by the three cables
on the hull, as well as the drag force FD exerted by the flow.

Equilibrium Condition. We express that the hull is in equilibrium
by writing that the resultant of all forces is zero:

R � TAB � TAC � TAE � FD � 0 (1)

Since more than three forces are involved, we resolve the forces into x and
y components:

TAB � �(40 N) sin 60.26°i � (40 N) cos 60.26°j
� �(34.73 N)i � (19.84 N)j

TAC � TAC sin 20.56°i � TAC cos 20.56°j
� 0.3512TACi � 0.9363TACj

TAE � �(60 N)j
FD � FDi

Substituting the expressions obtained into Eq. (1) and factoring the unit vec-
tors i and j, we have

(�34.73 N � 0.3512TAC � FD)i � (19.84 N � 0.9363TAC � 60 N)j � 0

This equation will be satisfied if, and only if, the coefficients of i and j are
equal to zero. We thus obtain the following two equilibrium equations, which
express, respectively, that the sum of the x components and the sum of the
y components of the given forces must be zero.

�Fx � 0: �34.73 N � 0.3512TAC � FD � 0 (2)
�Fy � 0: 19.84 N � 0.9363TAC � 60 N � 0 (3)

From Eq. (3) we find TAC � �42.9 lb

and, substituting this value into Eq. (2), FD � �19.66 lb

In drawing the free-body diagram, we assumed a sense for each unknown
force. A positive sign in the answer indicates that the assumed sense is cor-
rect. The complete force polygon may be drawn to check the results.

1.5 m
�
4 m

7 m
�
4 m

Flow A

B C

E

4 m

4 m

7 m 1.5 m

a
b

TAC

FD

TAB = 40 N

TAE = 60 N

a = 60.26°

b = 20.56°

A

FDi

TAC sin 20.56° i

TAC cos 20.56° j

20.56°
60.26°

(40 N) cos 60.26 j

–(40 N) sin 60.26 i

–(60 N) j

y

xA

TAC = 42.9 N

TAE = 60 N

TAB = 40 N

FD = 19.66 N

b = 20.56°

a = 60.26°
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

When a particle is in equilibrium, the resultant of the forces acting on the particle must be
zero. Expressing this fact in the case of a particle under coplanar forces will provide you
with two relations among these forces. As you saw in the preceding sample problems, these
relations can be used to determine two unknowns—such as the magnitude and direction of
one force or the magnitudes of two forces.

Drawing a free-body diagram is the first step in the solution of a problem involv-
ing the equilibrium of a particle. This diagram shows the particle and all the forces acting
on it. Indicate on your free-body diagram the magnitudes of known forces as well as any an-
gle or dimensions that define the direction of a force. Any unknown magnitude or angle
should be denoted by an appropriate symbol. Nothing else should be included on the free-
body diagram.

Drawing a clear and accurate free-body diagram is a must in the solution of any equilib-
rium problem. Skipping this step might save you pencil and paper, but is very likely to lead
you to a wrong solution.

Case 1. If only three forces are involved in the free-body diagram, the rest of the so-
lution is best carried out by drawing these forces in tip-to-tail fashion to form a force trian-
gle. This triangle can be solved graphically or using trigonometry for no more than two un-
knowns [Sample Probs. 2.4 and 2.5].

Case 2. If more than three forces are involved, it is to your advantage to use an ana-
lytic solution. Begin by selecting appropriate x and y axes and resolve each of the forces
shown in the free-body diagram into x and y components. Expressing that the sum of the x
components and the sum of the y components of all the forces are both zero, you will ob-
tain two equations which you can solve for no more than two unknowns [Sample Prob. 2.6].

It is strongly recommended that when using an analytic solution the equations of equilib-
rium be written in the same form as Eqs. (2) and (3) of Sample Prob. 2.6. The practice
adopted by some students of initially placing the unknowns on the left side of the equation
and the known quantities on the right side may lead to confusion in assigning the appro-
priate sign to each term.

We have noted that regardless of the method used to solve a two-dimensional equilibrium
problem we can determine at most two unknowns. If a two-dimensional problem involves
more than two unknowns, one or more additional relations must be obtained from the in-
formation contained in the statement of the problem.

Some of the following problems contain small pulleys. We will assume that the pulleys are
frictionless, so the tension in the rope or cable passing over a pulley is the same on each
side of the pulley. In Chap. 4 we will discuss why the tension is the same. Lastly, as we will
discuss in Chap. 10, the magnitude of the force F exerted on a body by a stretched or com-
pressed spring is given by F � kx, where k is the spring constant and x is the amount the
spring is stretched or compressed from its undeformed length.

40
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Problems

2.43 Knowing that � � 50° and that boom AC exerts on pin C a force
directed along line AC, determine (a) the magnitude of that force, (b) the
tension in cable BC.

2.44 Two cables are tied together at C and are loaded as shown. De-
termine the tension (a) in cable AC, (b) in cable BC.

41

B

C

300 mm

500 mm

400 mm 525 mm

3 kN

A

2.45 An irregularly shaped machine component is held in the position
shown by three clamps. Knowing that FA � 940 N, determine the magni-
tudes of the forces FB and FC exerted by the other two clamps.

2.46 Ropes AB and AC are thrown to a boater whose canoe had cap-
sized. Knowing that � � 25° and that the magnitude of the force FR exerted
by the river on the boater is 70 N, determine the tension (a) in rope AB, (b)
in rope AC.

Fig. P2.44

Fig. P2.43

FB

FA

FC

50°

70°

Fig. P2.45

B

40°

α

C

A

10°FR

Fig. P2.46

2.47 A boat is pulling a parasail and rider at a constant speed. Know-
ing that the rider weighs 550 N and that the resultant force R exerted by
the parasail on the towing yoke A forms an angle of 65° with the horizontal,
determine (a) the tension in the tow rope AB, (b) the magnitude of R.

Fig. P2.47

35° 25°

α

400 N

A

B

C

30°

A

B
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2.48 Two traffic signals are temporarily suspended from a cable as
shown. Knowing that the signal at B weighs 300 N, determine the weight of
the signal at C.

2.49 Two forces of magnitude TA � 8 kN and TB � 15 kN are applied
as shown to a welded connection. Knowing that the connection is in equi-
librium, determine the magnitudes of the forces TC and TD.

2.50 Two forces of magnitude TA � 6 kN and TC � 9 kN are applied
as shown to a welded connection. Knowing that the connection is in equi-
librium, determine the magnitudes of the forces TB and TD.

2.51 Four wooden members are joined with metal plate connectors
and are in equilibrium under the action of the four forces shown. Knowing
that FA � 2.3 kN and FB � 2.1 kN, determine the magnitudes of the other
two forces.

2.52 Four wooden members are joined with metal plate connectors
and are in equilibrium under the action of the four forces shown. Knowing
that FA � 1.9 kN and FC � 2.4 kN, determine the magnitudes of the other
two forces.

2.53 In a circus act, an aerialist performs a handstand on a wheel while
being pulled across a high wire ABC of length 8 m by another performer as
shown. Knowing that the tension in rope DE is 35 N when the aerialist is
held in equilibrium at a � 2.5 m, determine (a) the weight of the aerialist,
(b) the tension in the wire.

30° 30°

45°45°

FD

FB
FA

FC

Fig. P2.51 and P2.52

2.54 In a circus act, an aerialist performs a handstand on a wheel while
being pulled across a high wire ABC of length 8 m by another performer as
shown. Knowing that the aerialist weighs 720 N and is being held in equi-
librium at a � 3 m, determine (a) the tension in the wire, (b) the tension in
rope DE.

42 Statics of Particles

Fig. P2.48

3.6 m

4.9 m 4.5 m

3.4 m
3.8 m

A

C
B

D

3.4 m 2.4 m
40° TB

TD

TC

TA

Fig. P2.49 and P2.50

Fig. P2.53 and P2.54

A C

B

D E

a
7.95 m
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Problems 432.55 Two cables tied together at C are loaded as shown. Knowing that
W � 190 N, determine the tension (a) in cable AC, (b) in cable BC.

2.56 Two cables tied together at C are loaded as shown. Determine
the range of values of W for which the tension will not exceed 240 N in ei-
ther cable.

2.57 A load of weight 400 N is suspended from a spring and two cords
that are attached to blocks of weights 3W and W as shown. Knowing that the
constant of the spring is 800 N/m, determine (a) the value of W, (b) the un-
stretched length of the spring.

2.58 A block of weight W is suspended from a 25-cm-long cord and
two springs of which the unstretched lengths are 22.5 cm. Knowing that the
constants of the springs are kAB � 9 N/cm and kAD � 3 N/cm, determine
(a) the tension in the cord, (b) the weight of the block.

2.59 For the ropes and force of the river of Prob. 2.46, determine (a)
the value of � for which the tension in rope AB is as small as possible, (b)
the corresponding value of the tension.

Fig. P2.55 and P2.56

Fig. P2.57

Fig. P2.58

A B

W

C

150 N

12 m 30 m

16 m

15
8

A
W

B

DC

400 N

690 mm

690 mm840 mm

690 mm

360 mm

360 mm

3W

W

A

B

C

D

16.5 cm

7 cm

16 cm

8 cm

29 cm 23 cm

bee76985_ch02_15-72  5/9/07  12:06 PM  Page 43



2.60 Two cables tied together at C are loaded as shown. Knowing that
the maximum allowable tension in each cable is 900 N, determine (a) the
magnitude of the largest force P which may be applied at C, (b) the corre-
sponding value of �.

44 Statics of Particles

2.61 Two cables tied together at C are loaded as shown. Knowing that
the maximum allowable tension is 1400 N in cable AC and 700 N in cable
BC, determine (a) the magnitude of the largest force P which may be ap-
plied at C, (b) the corresponding value of �.

2.62 Knowing that portions AC and BC of cable ACB must be equal,
determine the shortest length of cable that can be used to support the load
shown if the tension in the cable is not to exceed 870 N.

2.63 For the structure and loading of Prob. 2.43, determine (a) the
value of � for which the tension in cable BC is as small as possible, (b) the
corresponding value of the tension.

2.64 Collar A can slide on a frictionless vertical rod and is attached as
shown to a spring. The constant of the spring is 4 N/cm, and the spring is
unstretched when h � 12 cm. Knowing that the system is in equilibrium
when h � 16 cm, determine the weight of the collar.

2.65 The 9-N collar A can slide on a frictionless vertical rod and is at-
tached as shown to a spring. The spring is unstretched when h � 12 cm.
Knowing that the constant of the spring is 3 N/cm, determine the value of h
for which the system is in equilibrium.

2.66 Boom AB is supported by cable BC and a hinge at A. Knowing
that the boom exerts on pin B a force directed along the boom and that the
tension in rope BD is 310 N, determine (a) the value of � for which the ten-
sion in cable BC is as small as possible, (b) the corresponding value of the
tension.

30º
A B

C

P

55º

a

Fig. P2.60 and P2.61

A

B

C

12 cm

h

Fig. P2.62

Fig. P2.64 and P2.65

A

B

C

1200 N

1.8 m

1.8 m

Fig. P2.66

20°30°

B

D

C

A

a
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2.67 The force P is applied to a small wheel that rolls on the cable
ACB. Knowing that the tension in both parts of the cable is 140 N, deter-
mine the magnitude and direction of P.

2.68 A 280-kg crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in the rope.
(Hint: The tension in the rope is the same on each side of a simple pulley.
This can be proved by the methods of Chap. 4.)

Fig. P2.67

Fig. P2.72

30º

A

B

C

P
45ºa

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.68

A

D

B

C

P

30°

50°

Q

Fig. P2.70 and P2.71

30 N

30 N

30°

50°

A

α

100 N

2.69 Solve parts b and d of Prob. 2.68 assuming that the free end of
the rope is attached to the crate.

2.70 A load Q is applied to the pulley C, which can roll on the cable
ACB. The pulley is held in the position shown by a second cable CAD, which
passes over the pulley A and supports a load P. Knowing that P � 800 N, de-
termine (a) the tension in cable ACB, (b) the magnitude of load Q.

2.71 A 2000-N load Q is applied to the pulley C, which can roll on
the cable ACB. The pulley is held in the position shown by a second cable
CAD, which passes over the pulley A and supports a load P. Determine (a)
the tension in cable ACB, (b) the magnitude of load P.

2.72 Three forces are applied to a bracket. The directions of the two
30-N forces can vary, but the angle between these forces is always 50�. De-
termine the range of values of � for which the magnitude of the resultant of
the forces applied to the bracket is less than 120 N.

FORCES IN SPACE

2.12. RECTANGULAR COMPONENTS OF A FORCE IN SPACE

The problems considered in the first part of this chapter involved only
two dimensions; they could be formulated and solved in a single plane.
In this section and in the remaining sections of the chapter, we will
discuss problems involving the three dimensions of space.

Consider a force F acting at the origin O of the system of rec-
tangular coordinates x, y, z. To define the direction of F, we draw the

2.12. Rectangular Components of a Force 
in Space

45
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vertical plane OBAC containing F (Fig. 2.30a). This plane passes
through the vertical y axis; its orientation is defined by the angle � it
forms with the xy plane. The direction of F within the plane is de-
fined by the angle �y that F forms with the y axis. The force F may
be resolved into a vertical component Fy and a horizontal component
Fh; this operation, shown in Fig. 2.30b, is carried out in plane OBAC
according to the rules developed in the first part of the chapter. The
corresponding scalar components are

Fy � F cos �y Fh � F sin �y (2.16)
But Fh may be resolved into two rectangular components Fx and Fz

along the x and z axes, respectively. This operation, shown in Fig.
2.30c, is carried out in the xz plane. We obtain the following expres-
sions for the corresponding scalar components:

Fx � Fh cos � � F sin �y cos �
(2.17)Fz � Fh sin � � F sin �y sin �

The given force F has thus been resolved into three rectangular vec-
tor components Fx, Fy, and Fz, which are directed along the three
coordinate axes.

Applying the Pythagorean theorem to the triangles OAB and OCD
of Fig. 2.30, we write

F2 � (OA)2 � (OB)2 � (BA)2 � Fy
2 � Fh

2

F2
h � (OC)2 � (OD)2 � (DC)2 � Fx

2 � Fz
2

Eliminating F2
h from these two equations and solving for F, we obtain

the following relation between the magnitude of F and its rectangu-
lar scalar components:

F � �Fx
2 � F�2

y � F2
z� (2.18)

The relationship existing between the force F and its three com-
ponents Fx, Fy, and Fz is more easily visualized if a “box” having Fx,
Fy, and Fz for edges is drawn as shown in Fig. 2.31. The force F is
then represented by the diagonal OA of this box. Figure 2.31b shows
the right triangle OAB used to derive the first of the formulas (2.16):
Fy � F cos �y. In Fig. 2.31a and c, two other right triangles have also
been drawn: OAD and OAE. These triangles are seen to occupy in
the box positions comparable with that of triangle OAB. Denoting by
�x and �z, respectively, the angles that F forms with the x and z axes,
we can derive two formulas similar to Fy � F cos �y. We thus write

Fx � F cos �x Fy � F cos �y Fz � F cos �z (2.19)

The three angles �x, �y, and �z define the direction of the force F;
they are more commonly used for this purpose than the angles �y and
� introduced at the beginning of this section. The cosines of �x, �y,
and �z are known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, directed respectively along
the x, y, and z axes (Fig. 2.32), we can express F in the form

F � Fxi � Fyj � Fzk (2.20)

where the scalar components Fx, Fy, Fz are defined by the relations (2.19).

Example 1. A force of 500 N forms angles of 60°, 45°, and 120°,
respectively, with the x, y, and z axes. Find the components Fx, Fy, and Fz

of the force.

(a)

A

B

C

z

y

x
O

F

�

�y

(b)

Fh

Fy A

B

C

z

y

x
O

F�y

(c)

Fh

Fy

Fx

Fz

E

D

B

C
z

y

x
O

�

46 Statics of Particles

Fig. 2.30

Fig. 2.31

Fx

Fy

Fz

F �x
x

y

A

D

E

O

B

C
z

(a)
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Substituting F � 500 N, �x � 60°, �y � 45°, �z � 120° into formulas
(2.19), we write

Fx � (500 N) cos 60° � �250 N
Fy � (500 N) cos 45° � �354 N
Fz � (500 N) cos 120° � �250 N

Carrying into Eq. (2.20) the values obtained for the scalar components of F,
we have

F � (250 N)i � (354 N)j � (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the
component has the same sense as the corresponding axis, and a minus sign
indicates that it has the opposite sense.

The angle a force F forms with an axis should be measured from
the positive side of the axis and will always be between 0 and 180°. An
angle �x smaller than 90° (acute) indicates that F (assumed attached
to O) is on the same side of the yz plane as the positive x axis; cos �x

and Fx will then be positive. An angle �x larger than 90° (obtuse) in-
dicates that F is on the other side of the yz plane; cos �x and Fx will
then be negative. In Example 1 the angles �x and �y are acute, while
�z is obtuse; consequently, Fx and Fy are positive, while Fz is negative.

Substituting into (2.20) the expressions obtained for Fx, Fy, and
Fz in (2.19), we write

F � F(cos �xi � cos �yj � cos �zk) (2.21)

which shows that the force F can be expressed as the product of the
scalar F and the vector

� � cos �xi � cos �yj � cos �zk (2.22)

Clearly, the vector � is a vector whose magnitude is equal to 1 and
whose direction is the same as that of F (Fig. 2.33). The vector � is
referred to as the unit vector along the line of action of F. It follows
from (2.22) that the components of the unit vector � are respectively
equal to the direction cosines of the line of action of F:

�x � cos �x �y � cos �y �z � cos �z (2.23)

We should observe that the values of the three angles �x, �y, and
�z are not independent. Recalling that the sum of the squares of the
components of a vector is equal to the square of its magnitude, we write

�x
2 � �2

y � �2
z � 1

or, substituting for �x, �y, and �z from (2.23),

cos2 �x � cos2 �y � cos2 �z � 1 (2.24)

In Example 1, for instance, once the values �x � 60° and �y � 45°
have been selected, the value of �z must be equal to 60° or 120° in
order to satisfy identity (2.24).

When the components Fx, Fy, and Fz of a force F are given, the
magnitude F of the force is obtained from (2.18). The relations (2.19)
can then be solved for the direction cosines,

cos �x � cos �y � cos �z � (2.25)

and the angles �x, �y, �z characterizing the direction of F can be found.

Fz�
F

Fy
�
F

Fx�
F

Fx

Fy

Fz

F
x

y

A

D

E

O

B

C
z

(b)

�y

Fx

Fy

Fz

F

�z

x

y

A

D

E

O

B

C
z

(c)

y

x

z

ik

j

Fig. 2.31

Fig. 2.32

2.12. Rectangular Components of a Force 
in Space
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Fig. 2.33

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi
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48 Statics of Particles Example 2. A force F has the components Fx � 20 N, Fy � �30 N,
Fz � 60 N. Determine its magnitude F and the angles �x, �y, and �z it
forms with the coordinate axes.

From formula (2.18) we obtain†

F � �Fx
2 � F�2

y � Fz
2�

� �(20 N)�2 � (��30 N)2� � (60� N)2�
� �4900� N � 70 N

Substituting the values of the components and magnitude of F into Eqs.
(2.25), we write

cos �x � � cos �y � � cos �z � �

Calculating successively each quotient and its arc cosine, we obtain

�x � 73.4° �y � 115.4° �z � 31.0°

These computations can be carried out easily with a calculator.

2.13. FORCE DEFINED BY ITS MAGNITUDE AND TWO 
POINTS ON ITS LINE OF ACTION

In many applications, the direction of a force F is defined by the co-
ordinates of two points, M(x1, y1, z1) and N(x2, y2, z2), located on its
line of action (Fig. 2.34). Consider the vector MN�� joining M and N

60 N
�
70 N

Fz�
F

�30 N
�

70 N
Fy
�
F

20 N
�
70 N

Fx�
F

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λλ

Fig. 2.34

and of the same sense as F. Denoting its scalar components by dx, dy,
and dz, respectively, we write

MN�� � dxi � dyj � dzk (2.26)

The unit vector � along the line of action of F (i.e., along the line 
MN) can be obtained by dividing the vector MN�� by its magnitude
MN. Substituting for MN�� from (2.26) and observing that MN is equal
to the distance d from M to N, we write

� � � (dxi � dyj � dzk) (2.27)1
�
d

MN��
�
MN

†With a calculator programmed to convert rectangular coordinates into polar coordi-
nates, the following procedure will be found more expeditious for computing F: First de-
termine Fh from its two rectangular components Fx and Fz (Fig. 2.30c), then determine F
from its two rectangular components Fh and Fy (Fig. 2.30b). The actual order in which the
three components Fx, Fy, and Fz are entered is immaterial.

bee76985_ch02_15-72  5/9/07  12:06 PM  Page 48



2.14. Addition of Concurrent Forces in Space 49Recalling that F is equal to the product of F and �, we have

F � F� � (dxi � dyj � dzk) (2.28)

from which it follows that the scalar components of F are, respectively,

Fx � Fy � Fz � (2.29)

The relations (2.29) considerably simplify the determination of
the components of a force F of given magnitude F when the line of
action of F is defined by two points M and N. Subtracting the coor-
dinates of M from those of N, we first determine the components of 
the vector MN�� and the distance d from M to N:

dx � x2 � x1 dy � y2 � y1 dz � z2 � z1

d � �dx
2 � d�2

y � dz
2�

Substituting for F and for dx, dy, dz, and d into the relations (2.29),
we obtain the components Fx, Fy, and Fz of the force.

The angles �x, �y, and �z that F forms with the coordinate axes
can then be obtained from Eqs. (2.25). Comparing Eqs. (2.22) and
(2.27), we can also write

cos �x � cos �y � cos �z � (2.30)

and determine the angles �x, �y, and �z directly from the components 
and magnitude of the vector MN��.

2.14. ADDITION OF CONCURRENT FORCES IN SPACE

The resultant R of two or more forces in space will be determined by
summing their rectangular components. Graphical or trigonometric
methods are generally not practical in the case of forces in space.

The method followed here is similar to that used in Sec. 2.8 with
coplanar forces. Setting

R � �F

we resolve each force into its rectangular components and write

Rxi � Ryj � Rzk � �(Fxi � Fyj � Fzk)
� (�Fx)i � (�Fy)j � (�Fz)k

from which it follows that

Rx � �Fx Ry � �Fy Rz � �Fz (2.31)

The magnitude of the resultant and the angles �x, �y, and �z that the
resultant forms with the coordinate axes are obtained using the
method discussed in Sec. 2.12. We write

R � �Rx
2 � R�2

y � Rz
2� (2.32)

cos �x � �
R
R

x
� cos �y � �

R
R

y
� cos �z � �

R
R

z
� (2.33)

dz�
d

dy
�
d

dx�
d

Fdz�
d

Fdy
�

d
Fdx�
d

F
�
d
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SAMPLE PROBLEM 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the wire
is 2500 N. Determine (a) the components Fx, Fy, and Fz of the force acting
on the bolt, (b) the angles �x, �y, and �z defining the direction of the force.

SOLUTION

a. Components of the Force. The line of action of the force acting
on the bolt passes through A and B, and the force is directed from A to B. The
components of the vector AB��, which has the same direction as the force, are

dx � �40 m dy � �80 m dz � �30 m

The total distance from A to B is

AB � d � �dx
2 � d�y

2 � dz
2� � 94.3 m

Denoting by i, j, and k the unit vectors along the coordinate axes, we have

AB�� � �(40 m)i � (80 m)j � (30 m)k

Introducing the unit vector � � AB���AB, we write

F � F� � F � AB��

Substituting the expression found for AB��, we obtain

F � [�(40 m)i � (80 m)j � (30 m)k]

F � �(1060 N)i � (2120 N)j � (795 N)k

The components of F, therefore, are

Fx � �1060 N Fy � �2120 N Fz � �795 N

b. Direction of the Force. Using Eqs. (2.25), we write

cos �x � � cos �y � �

cos �z � �
F
F

z� �

Calculating successively each quotient and its arc cosine, we obtain

�x � 115.1° �y � 32.0° �z � 71.5°

(Note: This result could have been obtained by using the components and
magnitude of the vector AB�� rather than those of the force F.)

�795 N
�
2500 N

�2120 N
��

2500 N
Fy
�
F

�1060 N
��

2500 N
Fx�
F

2500 N
�
94.3 m

2500 N
�
94.3 m

AB��
�
AB

A

B

80 m 40 m

30 m

A

B

F

y

z

x
k

j

i

80 m 40 m

30 m

λλ

A

B

y

z

x

qy

qx

qz
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SAMPLE PROBLEM 2.8

A wall section of precast concrete is temporarily held by the cables shown.
Knowing that the tension is 840 N in cable AB and 1200 N in cable AC, de-
termine the magnitude and direction of the resultant of the forces exerted
by cables AB and AC on stake A.

27 m

C

D

A

B

8 m

16 m

11 m

51

C

B

A

16 m

16 m
8 m

11 m

y

z

x

ik

j λλAB

λλAC

N

SOLUTION

Components of the Forces. The force exerted by each cable on stake
A will be resolved into x, y, and z components. We first determine the com-
ponents and magnitude of the vectors AB�� and AC��, measuring them from A
toward the wall section. Denoting by i, j, and k the unit vectors along the
coordinate axes, we write

AB�� � �(16 m)i � (8 m)j � (11 m)k AB � 21 m
AC�� � �(16 m)i � (8 m)j � (16 m)k AC � 24 m

Denoting by �AB the unit vector along AB, we have

TAB � TAB�AB � TAB � AB��

Substituting the expression found for AB��, we obtain

TAB � [�(16 m)i � (8 m)j � (11 m)k]

TAB � �(640 N)i � (320 N)j � (440 N)k

Denoting by �AC the unit vector along AC, we obtain in a similar way

TAC � TAC�AC � TAC � AC��

TAC � �(800 N)i � (400 N)j � (800 N)k

Resultant of the Forces. The resultant R of the forces exerted by
the two cables is

R � TAB � TAC � �(1440 N)i � (720 N)j � (360 N)k

The magnitude and direction of the resultant are now determined:

R � �Rx
2 � R�2

y � Rz
2� � �(�144�0)2 ��(720)2� � (�3�60)2�

R � 1650 N
From Eqs. (2.33) we obtain

cos �x � � cos �y � �

cos �z � �

Calculating successively each quotient and its arc cosine, we have

�x � 150.8° �y � 64.1° �z � 102.6°

�360 N
�
1650 N

Rz�
R

�720 N
�
1650 N

Ry
�
R

�1440 N
��

1650 N
Rx�
R

1200 N
�

24 m
AC��
�
AC

840 N
�
21 m

840 N
�
21 m

AB��
�
AB
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

In this lesson we saw that a force in space can be defined by its magnitude and di-
rection or by its three rectangular components Fx, Fy, and Fz.

A. When a force is defined by its magnitude and direction, its rectangular
components Fx, Fy, and Fz can be found as follows:

Case 1. If the direction of the force F is defined by the angles �y and � shown
in Fig. 2.30, projections of F through these angles or their complements will yield
the components of F [Eqs. (2.17)]. Note that the x and z components of F are found
by first projecting F onto the horizontal plane; the projection Fh obtained in this
way is then resolved into the components Fx and Fz (Fig. 2.30c).

When solving problems of this type, we strongly encourage you first to sketch the
force F and then its projection Fh and components Fx, Fy, and Fz before beginning
the mathematical part of the solution.

Case 2. If the direction of the force F is defined by the angles �x, �y, and �z that
F forms with the coordinate axes, each component can be obtained by multiplying
the magnitude F of the force by the cosine of the corresponding angle [Example 1]:

Fx � F cos �x Fy � F cos �y Fz � F cos �z

Case 3. If the direction of the force F is defined by two points M and N located
on its line of action (Fig. 2.34), you will first express the vector MN�� drawn from M
to N in terms of its components dx, dy, and dz and the unit vectors i, j, and k:

MN�� � dxi � dyj � dzk

Next, you will determine the unit vector � along the line of action of F by divid-
ing the vector MN�� by its magnitude MN. Multiplying � by the magnitude of F,
you will obtain the desired expression for F in terms of its rectangular components
[Sample Prob. 2.7]:

F � F� � (dxi � dyj � dzk)

It is advantageous to use a consistent and meaningful system of notation when de-
termining the rectangular components of a force. The method used in this text is
illustrated in Sample Prob. 2.8 where, for example, the force TAB acts from stake
A toward point B. Note that the subscripts have been ordered to agree with the 
direction of the force. It is recommended that you adopt the same notation, as it
will help you identify point 1 (the first subscript) and point 2 (the second subscript).

F
�
d
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When forming the vector defining the line of action of a force, you may think of
its scalar components as the number of steps you must take in each coordinate di-
rection to go from point 1 to point 2. It is essential that you always remember to
assign the correct sign to each of the components.

B. When a force is defined by its rectangular components Fx, Fy, and Fz,
you can obtain its magnitude F by writing

F � ��Fx
2 � F2�y � Fz

2 

You can determine the direction cosines of the line of action of F by dividing the
components of the force by F:

cos �x � �
F
F

x� cos �y � �
F
F

y
� cos �z � �

F
F

z�

From the direction cosines you can obtain the angles �x, �y, and �z that F forms
with the coordinate axes [Example 2].

C. To determine the resultant R of two or more forces in three-dimensional
space, first determine the rectangular components of each force by one of the pro-
cedures described above. Adding these components will yield the components Rx,
Ry, and Rz of the resultant. The magnitude and direction of the resultant can then
be obtained as indicated above for the force F [Sample Prob. 2.8].

53
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Problems

2.73 To stabilize a tree partially uprooted in a storm, cables AB and
AC are attached to the upper trunk of the tree and then are fastened to steel
rods anchored in the ground. Knowing that the tension in cable AB is 950 N,
determine (a) the components of the force exerted by this cable on the tree,
(b) the angles �x, �y, and �z that the force forms with axes at A which are
parallel to the coordinate axes.

2.74 To stabilize a tree partially uprooted in a storm, cables AB and
AC are attached to the upper trunk of the tree and then are fastened to steel
rods anchored in the ground. Knowing that the tension in cable AC is 810 N,
determine (a) the components of the force exerted by this cable on the tree,
(b) the angles �x, �y, and �z that the force forms with axes at A which are
parallel to the coordinate axes.

2.75 Determine (a) the x, y, and z components of the 900-N force,
(b) the angles �x, �y, and �z that the force forms with the coordinate axes.

2.76 Determine (a) the x, y, and z components of the 1900-N force,
(b) the angles �x, �y, and �z that the force forms with the coordinate axes.

2.77 A gun is aimed at a point A located 20° west of north. Knowing
that the barrel of the gun forms an angle of 35° with the horizontal and that
the maximum recoil force is 180 N, determine (a) the x, y, and z compo-
nents of that force, (b) the values of the angles �x, �y, and �z that define the
direction of the recoil force. (Assume that the x, y, and z axes are directed,
respectively, east, up, and south.)

2.78 Solve Prob. 2.77 assuming that point A is located 25° north of
west and that the barrel of the gun forms an angle of 30° with the horizontal.

2.79 The angle between the spring AB and the post DA is 30°. Know-
ing that the tension in the spring is 220 N, determine (a) the x, y, and z com-
ponents of the force exerted by this spring on the plate, (b) the angles �x, �y,
and �z that the force forms with the coordinate axes.

2.80 The angle between the spring AC and the post DA is 30°. Know-
ing that the x component of the force exerted by spring AC on the plate is
180 N, determine (a) the tension in spring AC, (b) the angles �x, �y, and �z

that the force exerted at C forms with the coordinate axes.

2.81 Determine the magnitude and direction of the force F � (65 N)i �
(80 N)j � (200 N)k.

2.82 Determine the magnitude and direction of the force F � (450
N)i � (600 N)j � (1800 N)k.
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2.83 A force acts at the origin of a coordinate system in a direction
defined by the angles �x � 43.2° and �z � 83.8°. Knowing that the y
component of the force is �50 N, determine (a) the angle �y, (b) the other
components and the magnitude of the force.

2.84 A force acts at the origin of a coordinate system in a direction
defined by the angles �x � 113.2° and �y � 78.4°. Knowing that the z com-
ponent of the force is �35 N, determine (a) the angle �z, (b) the other com-
ponents and the magnitude of the force.

2.85 A force F of magnitude 250 N acts at the origin of a coordinate
system. Knowing that Fx � 80 N, �y � 72.4°, and Fz � 0, determine (a) the
components Fy and Fz, (b) the angles �x and �z.

2.86 A force F of magnitude 320 N acts at the origin of a coordinate
system. Knowing that �x � 104.5°, Fz � �120 N, and Fy 	 0, determine (a)
the components Fx and Fy, (b) the angles �y and �z.

2.87 A steel rod is bent into a semicircular ring of radius 36 cm and
is supported in part by cables BD and BE which are attached to the ring at
B. Knowing that the tension in cable BD is 55 N, determine the components
of the force exerted by the cable on the support at D.

2.88 A steel rod is bent into a semicircular ring of radius 36 cm and
is supported in part by cables BD and BE which are attached to the ring at
B. Knowing that the tension in cable BE is 60 N, determine the components
of the force exerted by the cable on the support at E.

y
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B
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12 m
z
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x

Fig. P2.89 and P2.90

Problems 55
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Fig. P2.87 and P2.88

2.89 A transmission tower is held by three guy wires anchored by bolts
at B, C, and D. If the tension in wire AB is 2100 N, determine the compo-
nents of the force exerted by the wire on the bolt at B.

2.90 A transmission tower is held by three guy wires anchored by bolts
at B, C, and D. If the tension in wire AD is 1260 N, determine the compo-
nents of the force exerted by the wire on the bolt at D.
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2.91 Two cables BG and BH are attached to the frame ACD as shown.
Knowing that the tension in cable BG is 450 N, determine the components
of the force exerted by cable BG on the frame at B.

2.92 Two cables BG and BH are attached to the frame ACD as shown.
Knowing that the tension in cable BH is 600 N, determine the components
of the force exerted by cable BH on the frame at B.

2.93 Determine the magnitude and direction of the resultant of the
two forces shown knowing that P � 4 kN and Q � 8 kN.

2.94 Determine the magnitude and direction of the resultant of the
two forces shown knowing that P � 6 kN and Q � 7 kN.

Fig. P2.91 and P2.92

Fig. P2.93 and P2.94

56 Statics of Particles
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2.95 The boom OA carries a load P and is supported by two cables as
shown. Knowing that the tension is 510 N in cable AB and 765 N in cable
AC, determine the magnitude and direction of the resultant of the forces ex-
erted at A by the two cables.

2.96 Assuming that in Prob. 2.95 the tension is 765 N in cable AB and
510 N in cable AC, determine the magnitude and direction of the resultant
of the forces exerted at A by the two cables.

2.97 For the tree of Prob. 2.73, knowing that the tension in cable AB
is 760 N and that the resultant of the forces exerted at A by cables AB and
AC lies in the yz plane, determine (a) the tension in AC, (b) the magnitude
and direction of the resultant of the two forces.

2.98 For the tree of Prob. 2.73, knowing that the tension in cable AC
is 980 N and that the resultant of the forces exerted at A by cables AB and
AC lies in the yz plane, determine (a) the tension in AB, (b) the magnitude
and direction of the resultant of the two forces.

2.99 For the boom of Prob. 2.95, knowing that � � 0°, the tension in
cable AB is 600 N, and the resultant of the load P and the forces exerted at
A by the two cables is directed along OA, determine (a) the tension in cable
AC, (b) the magnitude of the load P.

2.100 For the transmission tower of Prob. 2.89, determine the ten-
sions in cables AB and AD knowing that the tension in cable AC is 1770 N
and that the resultant of the forces exerted by the three cables at A must be
vertical.

2.15. EQUILIBRIUM OF A PARTICLE IN SPACE

According to the definition given in Sec. 2.9, a particle A is in equi-
librium if the resultant of all the forces acting on A is zero. The com-
ponents Rx, Ry, and Rz of the resultant are given by the relations (2.31);
expressing that the components of the resultant are zero, we write

�Fx � 0 �Fy � 0 �Fz � 0 (2.34)

Equations (2.34) represent the necessary and sufficient conditions for
the equilibrium of a particle in space. They can be used to solve prob-
lems dealing with the equilibrium of a particle involving no more than
three unknowns.

To solve such problems, you first should draw a free-body dia-
gram showing the particle in equilibrium and all the forces acting on
it. You can then write the equations of equilibrium (2.34) and solve
them for three unknowns. In the more common types of problems,
these unknowns will represent (1) the three components of a single
force or (2) the magnitude of three forces, each of known direction.

Fig. P2.95

2.15. Equilibrium of a Particle in Space 57

Photo 2.3 While the tension in the four cables
supporting the shipping container cannot be found
using the three equations of (2.34), a relation
between the tensions can be obtained by
considering the equilibrium of the hook.
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5 8
SAMPLE PROBLEM 2.9

A 200-kg cylinder is hung by means of two cables AB and AC, which are
attached to the top of a vertical wall. A horizontal force P perpendicular to
the wall holds the cylinder in the position shown. Determine the magnitude
of P and the tension in each cable.

SOLUTION

Free-body Diagram. Point A is chosen as a free body; this point is
subjected to four forces, three of which are of unknown magnitude.

Introducing the unit vectors i, j, and k, we resolve each force into rec-
tangular components.

P � Pi
(1)

W � �mgj � �(200 kg)(9.81 m/s2)j � �(1962 N)j

In the case of TAB and TAC, it is necessary first to determine the components
and magnitudes of the vectors AB�� and AC��. Denoting by �AB the unit vector
along AB, we write

AB�� � �(1.2 m)i � (10 m)j � (8 m)k AB � 12.862 m

�AB � �
12.8

A
6
B�
2
�

m
� � �0.09330i � 0.7775j � 0.6220k

TAB � TAB�AB � �0.09330TABi � 0.7775TABj � 0.6220TABk (2)

Denoting by �AC the unit vector along AC, we write in a similar way

AC�� � �(1.2 m)i � (10 m)j � (10 m)k AC � 14.193 m

�AC � �
14.1

A
9
C��
3 m
� � �0.08455i � 0.7046j � 0.7046k

TAC � TAC�AC � �0.08455TACi � 0.7046TACj � 0.7046TACk (3)

Equilibrium Condition. Since A is in equilibrium, we must have

�F � 0: TAB � TAC � P � W � 0

or, substituting from (1), (2), and (3) for the forces and factoring i, j, and k,

(�0.09330TAB � 0.08455TAC � P)i
� (0.7775TAB � 0.7046TAC � 1962 N)j

� (0.6220TAB � 0.7046TAC)k � 0

Setting the coefficients of i, j, and k equal to zero, we write three scalar
equations, which express that the sums of the x, y, and z components of the
forces are respectively equal to zero.

�Fx � 0: �0.09330TAB � 0.08455TAC � P � 0
�Fy � 0: �0.7775TAB � 0.7046TAC � 1962 N � 0
�Fz � 0: �0.6220TAB � 0.7046TAC � 0

Solving these equations, we obtain

P � 235 N TAB � 1402 N TAC � 1238 N
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S O LV I N G  P R O B L E M S  
O N  YO U R  O W N

We saw earlier that when a particle is in equilibrium, the resultant of the forces acting on
the particle must be zero. Expressing this fact in the case of the equilibrium of a particle in
three-dimensional space will provide you with three relations among the forces acting on the
particle. These relations can be used to determine three unknowns—usually the magnitudes
of three forces.

Your solution will consist of the following steps:

1. Draw a free-body diagram of the particle. This diagram shows the particle and all
the forces acting on it. Indicate on the diagram the magnitudes of known forces, as well as
any angles or dimensions that define the direction of a force. Any unknown magnitude or
angle should be denoted by an appropriate symbol. Nothing else should be included on your
free-body diagram.

2. Resolve each of the forces into rectangular components. Following the method
used in the preceding lesson, you will determine for each force F the unit vector � defin-
ing the direction of that force and express F as the product of its magnitude F and the unit
vector �. When two points on the line of action of F are known, you will obtain an expres-
sion of the form

F � F� � (dxi � dyj � dzk)

where d, dx, dy, and dz are dimensions obtained from the free-body diagram of the particle.
We also showed the direction of F can be defined in terms of the angles �y and �. If a force
is known in magnitude as well as in direction, then F is known and the expression obtained
for F is completely defined; otherwise F is one of the three unknowns that should be 
determined.

3. Set the resultant, or sum, of the forces exerted on the particle equal to zero. You
will obtain a vectorial equation consisting of terms containing the unit vectors i, j, or k. You
will group the terms containing the same unit vector and factor that vector. For the vecto-
rial equation to be satisfied, the coefficient of each of the unit vectors must be equal to zero.
Thus, setting each coefficient equal to zero will yield three scalar equations that you can
solve for no more than three unknowns [Sample Prob. 2.9].

F
�
d

59
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Fig. P2.107 and P2.108

y

A

30 m

7.5 m
O

B

6 m

6 m

18 m
z

D

C

5.4 m

22.2 m

x

Problems

2.101 A container is supported by three cables that are attached to a
ceiling as shown. Determine the weight W of the container knowing that the
tension in cable AB is 6 kN.

2.102 A container is supported by three cables that are attached to a
ceiling as shown. Determine the weight W of the container knowing that the
tension in cable AD is 4.3 kN.

2.103 Three cables are used to tether a balloon as shown. Determine
the vertical force P exerted by the balloon at A knowing that the tension in
cable AB is 259 N.

2.104 Three cables are used to tether a balloon as shown. Determine
the vertical force P exerted by the balloon at A knowing that the tension in
cable AC is 444 N.

2.105 The support assembly shown is bolted in place at B, C, and D
and supports a downward force P at A. Knowing that the forces in members
AB, AC, and AD are directed along the respective members and that the
force in member AB is 29.2 N, determine the magnitude of P.

60

Fig. P2.105 and P2.106

Fig. P2.101 and P2.102

Fig. P2.103 and P2.104

y

x

z

450 mm 500 mm

360 mm

320 mm

600 mm

A

C

D

B

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

2.106 The support assembly shown is bolted in place at B, C, and D
and supports a downward force P at A. Knowing that the forces in members
AB, AC, and AD are directed along the respective members and that P � 45 N,
determine the forces in the members.

2.107 A transmission tower is held by three guy wires attached to a
pin at A and anchored by bolts at B, C, and D. If the tension in wire AB is
3.6 kN, determine the vertical force P exerted by the tower on the pin at A.

2.108 A transmission tower is held by three guy wires attached to a
pin at A and anchored by bolts at B, C, and D. If the tension in wire AC is
2.6 kN, determine the vertical force P exerted by the tower on the pin at A.

D

A

P

z

y

x

BC

4.8 cm

11 cm
7.2 cm

9.6 cm

9.6 cm
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Problems 612.109 A 320 N load of lumber is lifted using a triple leg sling. Know-
ing that at the instant shown the lumber is at rest, determine the tension in
each leg of the sling.

Fig. P2.109 and P2.110

2.110 A load of lumber is lifted using a triple leg sling. Knowing that
at the instant shown the lumber is at rest and that the tension in leg AD is
220 N, determine the weight of the lumber.

2.111 A force P is applied as shown to a uniform cone which is sup-
ported by three cords, where the lines of action of the cords pass through
the vertex A of the cone. Knowing that P � 0 and that the tension in cord
BE is 0.2 N, determine the weight W of the cone.

2.112 A force P is applied as shown to a uniform cone which is sup-
ported by three cords, where the lines of action of the cords pass through
the vertex A of the cone. Knowing that the cone weighs 1.6 N, determine
the range of values of P for which cord CF is taut.

2.113 A 16-kg triangular plate is supported by three wires as shown.
Knowing that a � 150 mm, determine the tension in each wire.

2.114 A 16-kg triangular plate is supported by three wires as shown.
Knowing that a � 200 mm, determine the tension in each wire.

A

30°

45°

15°

Pz

y

x

G

B

D

F

E

C

8 cm

8 cm1 cm

Fig. P2.111 and P2.112

2.115 A transmission tower is held by three guy wires attached to a
pin at A and anchored by bolts at B, C, and D. Knowing that the tower ex-
erts on the pin at A an upward vertical force of 8 kN, determine the tension
in each wire.

y

A

30 m

7.5 m
O

B

6 m

6 m

18 m
z

D

C

5.4 m

22.2 m

x

Fig. P2.115

3 cm

4 cm

6.5 cm

A

B

C

D

1 cm
1 cm

1.75 cm

8 cm

y

x

z

Fig. P2.113 and P2.114

y

400 mm
200 mm

600 mm

A
a

a C

D

B

x
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62 Statics of Particles 2.116 A derrick boom is guyed by cables AC and AD. A worker is lift-
ing a 20-kg block by pulling on a rope that passes through the pulley at A.
Knowing that the boom AB exerts a force at A that is directed from B to A,
determine this force and the force in each of the two cables.

y

xz

60°
40°

50°
A C

D

B

O

Fig. P2.117

Fig. P2.119

Fig. P2.116

x

y

z

6 m

6 m

7 m

3 m

8 m

4.5 m

6 m

1.5 m

A

O

B

C

E

D

2.120 Solve Prob. 2.119 assuming that a friend is helping the man at
A by pulling on him with a force P � �(45 N)k.

2.121 A force P is applied as shown to a uniform cone which is sup-
ported by three cords, where the lines of action of the cords pass through
the vertex A of the cone. Knowing that the cone weighs 10.5 N and that
P � 0, determine the tension in each cord.

2.122 A force P is applied as shown to a uniform cone which is sup-
ported by three cords, where the lines of action of the cords pass through
the vertex A of the cone. Knowing that the cone weighs 10.5 N and that
P � 0.5 N, determine the tension in each cord.

A

30°

45°

15°

P
z

y

x

G

B

D

F

E

C

200 mm

200 mm
25 mm

Fig. P2.121 and P2.122

z
16 cm

8 cm

B

A

C
O

x

y

4 cm

30 cm

32 cm

12 cm
 

2.117 A horizontal circular plate weighing 62 N is suspended as
shown from three wires that are attached to a support D and that form
30° angles with the vertical. Determine the tension in each wire.

2.118 For the cone of Prob. 2.112, determine the range of values of
P for which cord DG is taut if P is directed in the �x direction.

2.119 In trying to move across a slippery icy surface, a 175-N man uses
two ropes AB and AC. Knowing that the force exerted on the man by the icy
surface is perpendicular to that surface, determine the tension in each rope.
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2.123 To lower a pack of weight W to the hiker at C, the hik-
ers at A and B have passed a rope ADB through a ring attached to
the pack at D. The hiker at C is 64 m below A and guides the pack
using rope CD. Knowing that at the instant shown the pack is at rest
and that the tension in rope CD is 17 N, determine the tension in
rope ADB and the weight of the pack. (Hint: The tension is the same
in both portions of rope ADB.)

2.124 To lower a pack of weight W to the hiker at C, the hik-
ers at A and B have passed a rope ADB through a ring attached to
the pack at D. The hiker at C is 64 m below A and guides the pack
using rope CD. Knowing that W � 120 N and that at the instant shown
the pack is at rest, determine the tension in each rope. (Hint: The
tension is the same in both portions of rope ADB.)

2.125 A piece of machinery of weight W is temporarily supported
by cables AB, AC, and ADE. Cable ADE is attached to the ring at A,
passes over the pulley at D and back through the ring, and is attached to
the support at E. Knowing that W � 1400 N, determine the tension in
each cable. (Hint: The tension is the same in all portions of cable ADE.)

2.126 A piece of machinery of weight W is temporarily sup-
ported by cables AB, AC, and ADE. Cable ADE is attached to the ring
at A, passes over the pulley at D and back through the ring, and is at-
tached to the support at E. Knowing that the tension in cable AB is 300
N, determine (a) the tension in AC, (b) the tension in ADE, (c) the
weight W. (Hint: The tension is the same in all portions of cable ADE.)

Problems 63

2.127 Collars A and B are connected by a 1-m-long wire and can slide
freely on frictionless rods. If a force P � (680 N)j is applied at A, determine
(a) the tension in the wire when y � 300 mm, (b) the magnitude of the force
Q required to maintain the equilibrium of the system.

2.128 Solve Prob. 2.127 assuming y � 550 mm.

Fig. P2.123 and P2.124

Fig. P2.127

400 mm

x

y

y

z zB

Q

P

A

O

x40 m

11 m

10 m

8 m
3 m

3 m 4 m
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y

z

C
a

D

8 m

A

W

z

y

x

C

E

1.8 m

3.6 m
2.7 m

0.3 m

1.2 m

2.4 m

2.4 m

D

1.2 m

B

Fig. P2.125 and P2.126
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R E V I E W  A N D  S U M M A R Y
F O R  C H A P T E R  2

In this chapter we have studied the effect of forces on particles,
that is, on bodies of such shape and size that all forces acting on
them may be assumed applied at the same point.

Forces are vector quantities; they are characterized by a point
of application, a magnitude, and a direction, and they add accord-
ing to the parallelogram law (Fig. 2.35). The magnitude and di-
rection of the resultant R of two forces P and Q can be determined
either graphically or by trigonometry, using successively the law of
cosines and the law of sines [Sample Prob. 2.1].

Any given force acting on a particle can be resolved into two or
more components, that is, it can be replaced by two or more forces
which have the same effect on the particle. A force F can be resolved
into two components P and Q by drawing a parallelogram which has
F for its diagonal; the components P and Q are then represented by
the two adjacent sides of the parallelogram (Fig. 2.36) and can be de-
termined either graphically or by trigonometry [Sec. 2.6].

A force F is said to have been resolved into two rectangular
components if its components Fx and Fy are perpendicular to each
other and are directed along the coordinate axes (Fig. 2.37). In-
troducing the unit vectors i and j along the x and y axes, respec-
tively, we write [Sec. 2.7]

Fx � Fxi Fy � Fyj (2.6)

and
F � Fxi � Fyj (2.7)

where Fx and Fy are the scalar components of F. These components,
which can be positive or negative, are defined by the relations

Fx � F cos � Fy � F sin � (2.8)

When the rectangular components Fx and Fy of a force F are
given, the angle � defining the direction of the force can be ob-
tained by writing

tan � � (2.9)

The magnitude F of the force can then be obtained by solving one
of the equations (2.8) for F or by applying the Pythagorean theo-
rem and writing

F � �F2
x � F�2

y� (2.10)

Fy
�
Fx

Resultant of two forces

Components of a force

Rectangular components
Unit vectors

64

Fig. 2.35

Fig. 2.36

Fig. 2.37

Q

R

P

A

Q
F

P

A

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�
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When three or more coplanar forces act on a particle, the rec-
tangular components of their resultant R can be obtained by adding
algebraically the corresponding components of the given forces
[Sec. 2.8]. We have

Rx � �Fx Ry � �Fy (2.13)

The magnitude and direction of R can then be determined from
relations similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].

A force F in three-dimensional space can be resolved into rec-
tangular components Fx, Fy, and Fz [Sec. 2.12]. Denoting by �x,
�y, and �z, respectively, the angles that F forms with the x, y, and
z axes (Fig. 2.38), we have

Fx � F cos �x Fy � F cos �y Fz � F cos �z (2.19)

Resultant of several coplanar forces

Forces in space

Direction cosines

Fig. 2.38

The cosines of �x, �y, and �z are known as the direction cosines of
the force F. Introducing the unit vectors i, j, and k along the co-
ordinate axes, we write

F � Fxi � Fyj � Fzk (2.20)

or
F � F(cos �xi � cos �yj � cos �zk) (2.21)

which shows (Fig. 2.39) that F is the product of its magnitude F
and the unit vector

� � cos �xi � cos �yj � cos �zk

Since the magnitude of � is equal to unity, we must have

cos2 �x � cos2 �y � cos2 �z � 1 (2.24)

When the rectangular components Fx, Fy, and Fz of a force F
are given, the magnitude F of the force is found by writing

F � �F2
x � F�2

y � F2
z� (2.18)

and the direction cosines of F are obtained from Eqs. (2.19). We have

cos �x � cos �y � cos �z � (2.25)
Fz�
F

Fy
�
F

Fx�
F

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

�x

�y

�z

(a)

x

y

z
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D

E

F
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Fy

Fz
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y

z
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B

C

D

E

F

Fx

Fy

Fz

(b) (c)

OOO
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Fig. 2.39
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y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi
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66 Statics of Particles
When a force F is defined in three-dimensional space by its

magnitude F and two points M and N on its line of action [Sec.
2.13], its rectangular components can be obtained as follows. We 
first express the vector MN�� joining points M and N in terms of its
components dx, dy, and dz (Fig. 2.40); we write

MN�� � dxi � dyj � dzk (2.26)

We next determine the unit vector � along the line of action of F
by dividing MN�� by its magnitude MN � d:

� � � (dxi � dyj � dzk) (2.27)

Recalling that F is equal to the product of F and �, we have

F � F� � (dxi � dyj � dzk) (2.28)

from which it follows [Sample Probs. 2.7 and 2.8] that the scalar
components of F are, respectively,

Fx � Fy � Fz � (2.29)

When two or more forces act on a particle in three-dimensional
space, the rectangular components of their resultant R can be ob-
tained by adding algebraically the corresponding components of
the given forces [Sec. 2.14]. We have

Rx � �Fx Ry � �Fy Rz � �Fz (2.31)

The magnitude and direction of R can then be determined from
relations similar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].

A particle is said to be in equilibrium when the resultant of all
the forces acting on it is zero [Sec. 2.9]. The particle will then re-
main at rest (if originally at rest) or move with constant speed in a
straight line (if originally in motion) [Sec. 2.10].

To solve a problem involving a particle in equilibrium, one first
should draw a free-body diagram of the particle showing all the
forces acting on it [Sec. 2.11]. If only three coplanar forces act on
the particle, a force triangle may be drawn to express that the par-
ticle is in equilibrium. Using graphical methods or trigonometry,
this triangle can be solved for no more than two unknowns [Sam-
ple Prob. 2.4]. If more than three coplanar forces are involved, the
equations of equilibrium

�Fx � 0 �Fy � 0 (2.15)

should be used. These equations can be solved for no more than
two unknowns [Sample Prob. 2.6].

When a particle is in equilibrium in three-dimensional space
[Sec. 2.15], the three equations of equilibrium

�Fx � 0 �Fy � 0 �Fz � 0 (2.34)

should be used. These equations can be solved for no more than
three unknowns [Sample Prob. 2.9].

Fdz�
d

Fdy
�

d
Fdx�
d

F
�
d

1
�
d

MN��
�
MN

Resultant of forces in space

Equilibrium of a particle

Free-body diagram

Equilibrium in space

Fig. 2.40

x

y

z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0  λ
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Review Problems

2.129 Two forces are applied as shown to a hook support. Using
trigonometry and knowing that the magnitude of P is 14 N, determine (a)
the required angle � if the resultant R of the two forces applied to the sup-
port is to be horizontal, (b) the corresponding magnitude of R.

2.130 Determine the x and y components of each of the forces shown.

2.131 The guy wire BD exerts on the telephone pole AC a force P di-
rected along BD. Knowing that P has a 450-N component along line AC, de-
termine (a) the magnitude of the force P, (b) its component in a direction
perpendicular to AC.

67

2.132 Knowing that � � 25°, determine the tension (a) in cable AC,
(b) in rope BC.

2.133 The cabin of an aerial tramway is suspended from a set of wheels
that can roll freely on the support cable ACB and is being pulled at a con-
stant speed by cable DE. Knowing that � � 42° and � � 32°, that the tension
in cable DE is 20 kN, and assuming the tension in cable DF to be negligi-
ble, determine (a) the combined weight of the cabin, its support system, and
its passengers, (b) the tension in the support cable ACB.

Fig. P2.129

Fig. P2.130

Fig. P2.133

Fig. P2.131

Fig. P2.132

20 N

30°

P

a

435 N

510 NO x

y

225

240

70
210
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120

Dimensions
in mm

500 N
A

B

35°

C D

5°

A

C

B

α

5 kN

A

E

B

F

D

C

�

�

A

P

B

a

b

350 N
Fig. P2.134

2.134 A 350-N load is supported by the rope-and-pulley arrangement
shown. Knowing that � � 25°, determine the magnitude and direction of the
force P which should be exerted on the free end of the rope to maintain
equilibrium. (See the hint of Prob. 2.68.)
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2.135 A horizontal circular plate is suspended as shown from three
wires that are attached to a support at D and that form 30° angles with the
vertical. Knowing that the x component of the force exerted by wire AD on
the plate is 220.6 N, determine (a) the tension in wire AD, (b) the angles �x,
�y, and �z that the force exerted at A forms with the coordinate axes.

2.136 A force F of magnitude 600 N acts at the origin of a coordinate
system. Knowing that Fx � 200 N, �z � 136.8°, and Fy 	 0, determine (a)
the components Fy and Fz, (b) the angles �x and �y.

2.137 Find the magnitude and direction of the resultant of the two
forces shown knowing that P � 500 N and Q � 600 N.

2.138 The crate shown is supported by three cables. Determine the
weight of the crate knowing that the tension in cable AB is 3 kN.

2.139 A rectangular plate is supported by three cables as shown.
Knowing that the tension in cable AD is 120 N, determine the weight of the
plate.

2.140 A container of weight W is suspended from ring A. Cable BAC
passes through the ring and is attached to fixed supports at B and C. Two
forces P � Pi and Q � Qk are applied to the ring to maintain the container
in the position shown. Knowing that W � 1200 N, determine P and Q. (Hint:
The tension is the same in both portions of cable BAC.)

68 Statics of Particles

Fig. P2.135

Fig. P2.137

Fig. P2.138

y

xz

60°
40°

50°
A C

D

B

O

z

x

y

30°

20°

15°

40°P

Q

x

y

z

A

B

C

D
O

0.72 m

0.54 m

1.2 m

0.64 m

0.8 m

Fig. P2.139

x

y

z

A

B

C

DO

25

13
36

36

32
45

48

Dimensions in m

Fig. P2.140

Q
P

O

A

C

B

y

xz

W

160 mm 480 mm
240 mm

130 mm

720 mm

bee76985_ch02_15-72  5/9/07  12:06 PM  Page 68



69

Computer Problems

2.C1 Using computational software, determine the magnitude and di-
rection of the resultant of n coplanar forces applied at a point A. Use this
software to solve Probs. 2.31, 2.32, 2.33, and 2.34.

Fi

Fn

F1

A

�i

�1�n

x

Fig. P2.C1

Fig. P2.C3

Fig. P2.C4

Fig. P2.C22.C2 A worker plans to lift a 60-N 5-m3 bucket of paint by tying a rope
to the scaffold at A and then passing the rope through the bail of the bucket
at B and finally over the pulley at C. (a) Plot the tension in the rope as a
function of the height y for 2 m 
 y 
 18 m. (b) Evaluate the worker’s plan.

2.C3 The collar A can slide freely on the horizontal frictionless rod
shown. The spring attached to the collar has a spring constant k and is un-
deformed when the collar is directly below support B. Express in terms of k
and the distance c the magnitude of the force P required to maintain equi-
librium of the system. Plot P as a function of c for values of c from 0 to 600 mm
when (a) k � 2 N/mm, (b) k � 3 N/mm, (c) k � 4 N/mm.

2.C4 A load P is supported by two cables as shown. Using computa-
tional software, determine the tension in each cable as a function of P and
�. For the following three sets of numerical values, plot the tensions for val-
ues of � ranging from �1 � � � 90� to �2 � 90� and then determine from the
graphs (a) the value of � for which the tension in the two cables is as small
as possible, (b) the corresponding value of the tension.

(1) � � 35�, � � 75�, P � 1.6 kN
(2) � � 50�, � � 30�, P � 2.4 kN
(3) � � 40�, � � 60�, P � 1.0 kN

8 m

20 m

y

B

D

A C

A

P

300 mm

B

c

A B

C

P

�
�

�
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2.C5 Cables AC and BC are tied together at C and are loaded as shown.
Knowing that P � 100 N, (a) express the tension in each cable as a function
of �. (b) Plot the tension in each cable for 0 
 � 
 90�. (c) From the graph
obtained in part a, determine the smallest value of � for which both cables
are in tension.

A

q

30° 30°

B

P

150 N

C

Fig. P2.C5

Fig. P2.C6

Fig. P2.C7

2.C6 A container of weight W is suspended from ring A to which ca-
ble AB of length 5 m and spring AC are attached. The constant of the spring
is 100 N/m, and its unstretched length is 3 m. Determine the tension in the
cable when (a) W � 120 N, (b) W � 160 N.

2.C7 An acrobat is walking on a tightrope of length L � 80.3 m at-
tached to supports A and B at a distance of 80.0 m from each other. The
combined weight of the acrobat and his balancing pole is 200 N, and the fric-
tion between his shoes and the rope is large enough to prevent him from
slipping. Neglecting the weight of the rope and any elastic deformation, use
computational software to determine the deflection y and the tension in por-
tions AC and BC of the rope for values of x from 0.5 m to 40 m using 0.5-
m increments. From the results obtained, determine (a) the maximum de-
flection of the rope, (b) the maximum tension in the rope, (c) the minimum
values of the tension in portions AC and BC of the rope.

C

A

B

W

A
y

x

B

C

80 m.
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Computer Problems 712.C8 The transmission tower shown is guyed by three cables attached
to a pin at A and anchored at points B, C, and D. Cable AD is 21 m long
and the tension in that cable is 20 kN. (a) Express the x, y, and z compo-
nents of the force exerted by cable AD on the anchor at D and the corre-
sponding angles �x, �y, and �z in terms of �. (b) Plot the components of the
force and the angles �x, �y, and �z for 0 
 � 
 60�.

2.C9 A tower is guyed by cables AB and AC. A worker ties a rope of
length 12 m to the tower at A and exerts a constant force of 160 N on the
rope. (a) Express the tension in each cable as a function of � knowing that
the resultant of the tensions in the cables and the rope is directed downward.
(b) Plot the tension in each cable as a function of � for 0 
 � 
 180�, and
determine from the graph the range of values of � for which both cables are
taut.

Fig. P2.C9

Fig. P2.C8

Fig. P2.C10
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2.C10 Collars A and B are connected by a 10-m-long wire and can
slide freely on frictionless rods. If a force Q of magnitude 25 N is applied to
collar B as shown, determine the tension in the wire and the corresponding
magnitude of the force P required to maintain equilibrium. Plot the tension
in the wire and the magnitude of the force P for 0 
 x 
 5 m.
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