KEY CONCEPTS

- The unit vectors $\vec{i}=[1,0]$ and $\vec{j}=[0,1]$ have magnitude 1 unit and tails at the origin and point in the directions of the positive x - and y-axes respectively.
- A Cartesian vector is a representation of a vector on the Cartesian plane. Its endpoints are defined using Cartesian coordinates.
- If a Cartesian vector \vec{u} is translated so that its tail is at the origin, $(0,0)$, and its tip is at the point (a, b), the translated vector is called the position vector of \vec{u}. The position vector, and any other vector with the same magnitude and direction, is represented by the ordered pair $[a, b]$.

- The magnitude of $\vec{u}=\left[u_{1}, u_{2}\right]$ is $\vec{u}=\sqrt{u_{1}^{2}+u_{2}{ }^{2}}$.
- Any Cartesian vector $[a, b]$ can be written as the sum of its vertical and horizontal vector components, $[a, 0]$ and $[0, b]$.
- For vectors $\vec{u}=\left[u_{1}, u_{2}\right]$ and $\vec{v}=\left[v_{1}, v_{2}\right]$ and scalar $k \in \square$,
- $\vec{u}+\vec{v}=\left[u_{1}+v_{1}, u_{2}+v_{2}\right]$
- $\vec{u}-\vec{v}=\left[u_{1}-v_{1}, u_{2}-v_{2}\right]$
- $k \vec{v}=\left[k v_{1}, k v_{2}\right]$
- The Cartesian vector between two points $\mathrm{P}_{1}\left(x_{1}, y_{1}\right)$ and $\mathrm{P}_{2}\left(x_{2}, y_{2}\right)$ is $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}=\left[x_{2}-x_{1}, y_{2}-y_{1}\right]$. Its magnitude is $\left|\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

- A geometric vector \vec{v} can be written in Cartesian form as $\vec{v}=[|\vec{v}| \cos \theta,|\vec{v}| \sin \theta]$, where θ is the angle \vec{v} makes with the positive x-axis.

A

1. Express each vector in terms of \vec{t} and \vec{j}.
a) $[4,7]$
b) $[2,-3]$
c) $[-5,0]$
d) $[0,11]$
e) $[9,-1]$
f) $[6,2]$
g) $[-1.2,3.7]$
h) $\left[\frac{3}{5},-\frac{2}{3}\right]$
2. Express each vector in the form $[\mathrm{a}, \mathrm{b}]$
a) $-\vec{i}+3 \vec{j}$
b) $5 \vec{j}$
c) $6 \vec{i}-\vec{j}$
d) $8 \vec{i}+\vec{j}$
e) $-2 \vec{i}-2 \vec{j}$
f) $9 \vec{i}+7 \vec{j}$
g) $-\frac{1}{4} \vec{i}+\frac{3}{4} \vec{j}$
h) $5.8 \vec{i}-6.2 \vec{j}$
3. Write the coordinates of each Cartesian Vector.

4. Determine the magnitude of each vector in question 3.
5. Consider the vector $\vec{v}=[7,-2]$.
a) State the vertical and horizontal vector components of \vec{v}.
b) Find two unit vectors that are collinear with \vec{v}.
c) An equivalent vector $\overrightarrow{P Q}$ has its initial point at $\mathrm{P}(-3,4)$. Determine the coordinates of Q .
d) An equivalent vector $\overrightarrow{H I}$ has its terminal point at $\mathrm{I}(1,-1)$. Determine the coordinates of H .
6. Given the points $\mathrm{A}(2,-7), \mathrm{B}(-4,5)$, and $\mathrm{C}(6,8)$, find
a) $\overrightarrow{A C}$
b) $|\overrightarrow{A B}|$
c) the perimeter of $\triangle \mathrm{ABC}$
7. If $\vec{u}=[6,-5]$ and $\vec{v}=[1,4]$, find
a) $-2 \vec{u}$
b) $5 \vec{u}-\vec{v}$
c) $\vec{v}+3 \vec{u}$
d) $6 \vec{u}$
8. Which vector is not collinear with $\vec{a}=[-5,7]$?
A $\vec{a}=[20,-28]$
B $\vec{b}=[-10,14]$
C $\vec{c}=[25,35]$
D $\vec{d}=\left[-\frac{5}{2}, \frac{7}{2}\right]$

B

9. Determine the value of k so that the vectors in each pair are collinear.
a) $\vec{u}=[2, k], \vec{v}=[-12,30]$
b) $\vec{u}=[-4,32], \vec{v}=[k, 8]$
c) $\vec{u}=[k, 9], \vec{v}=[5,-2]$
d) $\vec{u}=[-4,6], \vec{v}=[30, k]$
10. Write each force as a Cartesian vector.
a) 250 N applied at 60° to the horizontal
b) 400 N applied at 58° to the vertical
c) 310 N applied upward
d) 125 N applied downward
e) 35 N applied to the west
f) 780 N applied to the east
11. A fishing boat sets its course at a heading of 173°, with a speed of 35 knots. The water current is flowing from a bearing of 118°, at 16 knots. Use Cartesian vectors to determine the resultant velocity of the fishing boat.
12. Find a unit vector that is in the same direction as [3, -7].
13. Express the vector $\vec{u}=[5,-8]$, in terms of $\vec{v}=[-2,4]$ and $\vec{w}=[3,1]$.
14. Let $\vec{a}=[3,-7]$ and $\vec{b}=[-5,11]$.
a) Plot the two vectors.
b) Which is greater, $|\vec{a}+\vec{b}|$ or $|\vec{a}|+|\vec{b}|$?
c) Will this be true for all pairs of vectors? Justify your answer with examples.
15. Let $\vec{a}=[-2,-4]$ and $\vec{b}=[7,10]$.
a) Plot the two vectors.
b) Which is smaller, $|\vec{a}-\vec{b}|$ or

$$
|\vec{a}|-|\vec{b}| ?
$$

c) Will this be true for all pairs of vectors? Justify your answer with examples.
16. Consider the vectors $\vec{a}=[4,-3]$,
$\vec{b}=[-5,9]$, and $\vec{c}=[8,-1]$, and the constants $k=3$ and $m=-2$. Use Cartesian vectors to prove each property.
a) $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
b) $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
c) $\vec{b}+\vec{c}=\vec{c}+\vec{b}$
d) $(k+m) \vec{c}=k \vec{c}+m \vec{c}$
17. Let $\vec{a}=[3,-4]$ and $\vec{b}=[-6, k]$.
a) Determine the value(s) of k such that $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$. What is the relationship between the two vectors for this result to be true?
b) Determine the value(s) of k such that $|\vec{a}+\vec{b}|<|\vec{a}|+|\vec{b}|$. What is the relationship between the two vectors for this result to be true?
18. Nathan pulls a sleigh, exerting a force of 120 N along a rope that makes an angle of 45° to the horizontal. Write this force in component form as a Cartesian vector.
19. Emilia pushes a wheelbarrow with a force of 215 N . The handle makes an angle of 32° with the ground. Write this force in component form as a Cartesian vector.
20. An airplane is flying at $640 \mathrm{~km} / \mathrm{h}$ on a heading of 310°. The wind is blowing at $40 \mathrm{~km} / \mathrm{h}$ on a bearing of 085°.
Determine the ground velocity of the airplane.
21. Andrew and David kick a football at the same time. Andrew kicks it with a force of 155 N and David kicks it with a force of 210 N . The angle between the two forces is 30°. Calculate the magnitude and direction of the resultant force.
22. Three basketball players are fighting over the ball. Julia is pulling with a force of 530 N , Cassandra is pulling with a force of 690 N , and Laura is pulling with a force of 620 N . The angle between Julia and Cassandra is 60°, and the angle between Cassandra and Laura is 145°. Determine the resultant force on the basketball.
23. Paramedics Lucas and Saisha are moving a car accident victim on a stretcher. Lucas is pushing the stretcher with a force of 145 N at 62° to the horizontal, while Saisha is pulling the stretcher with a force of 213 N at 38° to the horizontal. What is the magnitude and direction of the force exerted on the stretcher?
24. Determine the value of m such that $|(2 m-1) \vec{i}+m \vec{j}|=1$.

C
25. A ship leaves port at $7 \mathrm{a} . \mathrm{m}$. and heads to a destination that is 750 km away, at a bearing of 050°. A $20-\mathrm{km} / \mathrm{h}$ current is flowing from a bearing of 220°. What velocity (magnitude and direction) should the captain set in order to reach the destination at 10 p.m.?
26. If $\vec{a}=[3,-2]$ and $\vec{b}=[x, 5]$ determine the possible value(s) of x such that $|\vec{a}+\vec{b}|=6$.
27. Solve for x.
a) $\vec{u}=[-2 x, 3 x],|\vec{u}|=6$
b) $\vec{u}=[x,-4 x], \vec{v}=[3 x, 2 x]$, $|\vec{u}+\vec{v}|=8$
c) $\vec{u}=[5,2 \mathrm{x}], \vec{v}=[-x,-6 x]$, $|\vec{u}+\vec{v}|=9 x$
28. The magnitude of a vector is 6 and the y-coordinate is triple the x-coordinate. Determine the coordinates of the vector.
29. Show that any unit vector in the Cartesian plane can be written as [$\cos \theta, \sin \theta]$, where θ is the angle between the unit vector and the x-axis.
30. Show that any vector \vec{v} in the Cartesian plane can be written as $[|\vec{v}| \cos \theta,|\vec{v}| \sin \theta]$, where θ is the angle between \vec{v} and the x-axis.
31. Let $\overrightarrow{R S}=-\frac{3}{4} \overrightarrow{S T}$. Determine the coordinates of S for the given points R and T .
a) $\mathrm{R}(3,7), \mathrm{T}(-5,1)$
b) $\mathrm{R}(-4,0), \mathrm{T}(2,6)$
c) $\mathrm{R}(x 1, y 1), \mathrm{T}(x 2, y 2)$
32. Prove that the segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to

