

Curriculum Correlation between McGraw-Hill Ryerson Mathematics 9: Applying the Concepts and The Ontario Curriculum Foundations of Mathematics, Grade 9, Applied (MFM1P)

This course enables students to develop mathematical ideas and methods through the exploration of applications, the effective use of technology, and extended experiences with hands-on activities. Students will investigate relationships of straight lines in analytic geometry, solve problems involving the measurement of 3-dimensional objects and 2-dimensional figures, and apply key numeric and algebraic skills in problem solving. Students will also have opportunities to consolidate core skills and deepen their understanding of key mathematical concepts.

Prerequisite: none

Number Sense and Algebra

Overall Expectations

By the end of this course, students will:

- consolidate numerical skills by using them in a variety of contexts throughout the course;
- demonstrate understanding of the three basic exponent rules and apply them to simplify expressions;
- manipulate first-degree polynomial expressions to solve first-degree equations;
- solve problems, using the strategy of algebraic modelling.

Specific Expectations

	Chapter/Section	Pages		
Consolidating Numerical Skills				
By the end of this course, students will:	By the end of this course, students will:			
determine strategies for mental mathematics and	1.2	10-15		
estimation, and apply these strategies throughout the	throughout	1-119		
course;	Chapters 1–3			
• demonstrate facility in operations with integers, as	1.1	4–9		
necessary to support other topics of the course (e.g.,	5.1, 5.2	172–183		
polynomials, equations, analytic geometry);				
• demonstrate facility in operations with percent, ratio and	5.4, 5.5, 5.6	191–211		
rate, and rational numbers, as necessary to support other				
topics of the course (e.g., analytic geometry,				
measurement);				
• use a scientific calculator effectively for applications	throughout	1–217		
that arise throughout the course;	Chapters 1–5			
 judge the reasonableness of answers to problems by 	throughout	1-217		
considering likely results within the situation described	Chapters 1–5			
in the problem;				
• judge the reasonableness of answers produced by a	throughout	1–217		
calculator, a computer, or pencil and paper, using mental	Chapters 1–5			
mathematics and estimation.				

<i>perating with Exponents</i>		
 by the end of this course, students will: evaluate numerical expressions involving natural- 	1.3	16-21
• evaluate numerical expressions involving natural- number exponents with rational-number bases;	8.1, 8.2	342-345
 substitute into and evaluate algebraic expressions 	1.4	22-27
• substitute into and evaluate algebraic expressions involving exponents, to support other topics of the		34–117
course (e.g., measurement, analytic geometry);	throughout Chapters 2, 3,	222-331
course (e.g., measurement, anarytic geometry),	6, and 7	222-551
• determine the meaning of negative exponents and of	8.3	347-351
zero as an exponent from activities involving graphing,		
using technology, and from activities involving patterning;		
represent very large and very small numbers, using	8.4	352-357
scientific notation;		
• enter and interpret exponential notation on a scientific	8.4	352-357
calculator, as necessary in calculations involving very		
large and very small numbers;		
• determine, from the examination of patterns, the	8.2	342-346
exponent rules for multiplying and dividing monomials		
and the exponent rule for the power of a power, and		
apply these rules in expressions involving one variable.		
Ianipulating Polynomial Expressions and Solving Equations		
By the end of this course, students will:	11	
• add and subtract polynomials, and multiply a polynomial	9.1, 9.2, 9.3	366-381
by a monomial;		
• expand and simplify polynomial expressions involving	9.4	382-385
one variable;		
• solve first-degree equations, excluding equations with	10.1, 10.2	394–398
fractional coefficients, using an algebraic method;		
• calculate sides in right triangles, using the Pythagorean	2.1	36-41
theorem, as required in topics throughout the course	2.3	48–53
(e.g., measurement);		
• substitute into measurement formulas and solve for one	1.4	22-27
variable, with and without the help of technology.	Throughout	34-117
	Ch 2 and 3	404-410
	10.3	
Using Algebraic Modelling to Solve Problems		
By the end of this course, students will:	10.4	411 417
• use algebraic modelling as one of several problem-	10.4	411-417
solving strategies in various topics of the course (e.g.,		
relations, measurement, direct and partial variation, the		
Pythagorean theorem, percent);	10.4	200 102
• compare algebraic modelling with other strategies used	10.4	399–403
for solving the same problem;		20 4 425
communicate solutions to problems in appropriate	throughout	394-437
mathematical forms (e.g., written explanations,	Chapter 10	
formulas, charts, tables, graphs) and justify the		
reasoning used in solving the problems.		

Relationships

Overall Expectations

By the end of this course, students will:

- determine relationships between two variables by collecting and analysing data;
- compare the graphs of linear and non-linear relations;
- describe the connections between various representations of relations.

Specific Expectations

	Chapter/Section	Pages
Determining Relationships		
By the end of this course, students will:		
• pose problems, identify variables, and formulate	4.1	124-129
hypotheses associated with relationships (Sample		
problem: Does the rebound height of a ball depend on		
the height from which it was dropped? Make a		
hypothesis and then design an experiment to test it);		
demonstrate an understanding of some principles of	4.2	130-135
sampling and surveying (e.g., randomization,		
representivity, the use of multiple trials) and apply the		
principles in designing and carrying out experiments to		
investigate the relationships between variables (Sample		
problem: What factors might affect the outcome of this		
experiment? How could you design the experiment to		
account for them?);		
 collect data, using appropriate equipment and/or 	4.6	156-159
technology (e.g., measuring tools, graphing calculators,		
scientific probes, the Internet) (Sample problem: Drop a		
ball from varying heights, measuring the rebound height		
each time);		
• organize and analyse data, using appropriate techniques	4.3	136-142
(e.g., making tables and graphs, calculating measures of		
central tendency) and technology (e.g., graphing		
calculators, statistical software, spreadsheets) (Sample		
problem: Enter the data into a spreadsheet. Decide what		
analysis would be appropriate to examine the		
relationship between the variables – a graph, measures		
of central tendency, ratios);		
• describe trends and relationships observed in data, make	4.3	136-142
inferences from data, compare the inferences with	4.5	149–155
hypotheses about the data, and explain the differences		
between the inferences and the hypotheses (Sample		
problem: Describe any trend observed in the data. Does		
a relationship seem to exist? Of what sort? Is the		
outcome consistent with your original hypothesis?		
Discuss any outlying pieces of data and provide		
explanations for them. Suggest a formula relating the		
rebound height to the height from which the ball was		
dropped. How might you vary this experiment to		
examine other relationships?);		
• communicate the findings of an experiment clearly and	4.6	156-159
concisely, using appropriate mathematical forms (e.g.,		
written explanations, formulas, charts, tables, graphs),		
and justify the conclusions reached;		

McGraw-Hill Ryerson, 300 Water Street, Whitby ON, L1N 9B6 Tel: (905) 430-5000, Fax: (905) 430-5194 Toll Free Order: 1-800-565-5758, Toll Free Fax: 1-800-463-5885 www.mcgrawhill.ca/school

		Chapter/Section	Pages
• solv	e and/or pose problems related to an experiment,	4.5, 4.6	149–159
usir	ng the findings of the experiment.		
Comparing	Linear and Non-linear Relations		
By the end o	of this course, students will:		
• con	struct tables of values, graphs, and formulas to	6.1, 6.2	224-247
rep	resent linear relations derived from descriptions of	6.3	
	istic situations involving direct and partial variation		
	a, the cost of holding a banquet in a rented hall is \$25		
	person plus \$975 for the hall);		
	struct tables of values and scatter plots for linearly	6.1, 6.2, 6.3	224-247
	ted data involving direct variation collected from	7.6	314-321
	eriments (e.g., the rebound height of a ball versus the		
	ght from which it was dropped);	7.6	214 221
	ermine the equation of a line of best fit for a scatter	7.6	314–321
	t, using an informal process (e.g., a process of trial error on a graphing calculator; calculation of the		
	ation of the line joining two carefully chosen points		
	the scatter plot);		
	struct tables of values and graphs to represent non-	6.4	248-257
	ar relations derived from descriptions of realistic	0.1	210 257
	ations (e.g., represent the relationship between the		
	ume of a cube and its side length, as the side length		
	les);		
• den	nonstrate an understanding that straight lines	Chapter 6	224-271
	resent linear relations and curves represent non-linear		
	tions.		
Describing (Connections Between Representations of Relations		
By the end o	of this course, students will:		
	ermine values of a linear relation by using the	6.1	224-231
	nula of the relation and by interpolating or		
	apolating from the graph of the relation (e.g., if a		
	lent earns \$5/h caring for children, determine how		
	g he or she must work to earn \$143);		224 271
	cribe, in written form, a situation that would explain	Chapter 6	224-271
	events illustrated by a given graph of a relationship	7.1	280-287
	ween two variables (e.g., write a story that matches		
	events shown in the graph); ntify, by calculating finite differences in its table of	6.5	258-265
	us, whether a relation is linear or non-linear;	0.5	238-203
	cribe the effect on the graph and the formula of a	Chapter 6	224-271
	tion of varying the conditions of a situation they		22 4 -2/1
	resent (e.g., if a graph showing partial variation		
	resents the cost of producing a yearbook, describe		
-	v the appearance of the graph changes if the cost per		
boo	k is altered; describe how it changes if the fixed		

Analytic Geometry

Overall Expectations

By the end of this course, students will:

- determine, through investigation, the relationships between the form of an equation and the shape of its graph with respect to linearity and non-linearity;
- determine, through investigation, the properties of the slope and y-intercept of a linear relation;
- graph a line and write the equation of a line from given information

Specific Expectations

	Chapter/Section	Pages
Investigating the Relationship Between the Equation of a		
Relation and the Shape of Its Graph		
By the end of this course, students will:		
• determine, through investigations, the characteristics that	6.3, 6.4	240-257
distinguish the equation of a straight line from the	6.6	266-271
equations of non-linear relations (e.g., use graphing		
software to obtain the graphs of a variety of linear and		
non-linear relations from their equations; classify the		
relations according to the shapes of their graphs; focus		
on the characteristics of the equations of linear relations		
and how they differ from the characteristics of the		
equations of non-linear relations);		266 271
• select the equations of straight lines from a given set of	6.6	266–271
equations of linear and non-linear relations;	7.5	206 212
• identify $y = mx + b$ as a standard form for the equation	7.5	306-313
of a straight line, including the special cases $x = a, y = b$.		
Investigating the Properties of Slope		
By the end of this course, students will:	70.72	200 200
• identify practical situations illustrating slope (e.g.,	7.2, 7.3	288-298
ramps, slides, staircases) and calculate the slopes of the		
inclines;	7.2	288–293
• determine the slope of a line segment, using the formula	1.2	200-295
;		
• identify the geometric significance of <i>m</i> and <i>b</i> in the	7.5	306-313
equation $y = mx + b$ through investigation;		
• identify the properties of the slopes of line segments	7.4	299-305
(i.e., direction, positive or negative rate of change,	7.7	322-325
steepness, parallelism, perpendicularity) through		
investigations facilitated by graphing technology, where		
appropriate.		
Graphing and Writing Equations of Lines		
 By the end of this course, students will: plot points on the <i>xy</i>-plane and use the terminology and 	5.3	184–190
• plot points on the <i>xy</i> -plane and use the terminology and notation of the <i>xy</i> -plane correctly;	5.5	104-190
	Chapters 6 and 7	222
 graph lines by hand, using a variety of techniques (e.g., making a table of values, using intercepts, using the 	Chapters 6 and 7	222–333
slope and y-intercept);		
 graph lines, using graphing calculators or graphing 	Chapters 6 and 7	222-333
software;		222-333
• determine the equation of a line, given the slope and y-	10.5, 10.6	418-429
intercept, the slope and a point on the line, and two		
points on the line;		
M-Crear IIII Decreare 200 Weter Street White ON I IN ODC T		

McGraw-Hill Ryerson, 300 Water Street, Whitby ON, L1N 9B6 Tel: (905) 430-5000, Fax: (905) 430-5194 Toll Free Order: 1-800-565-5758, Toll Free Fax: 1-800-463-5885 www.mcgrawhill.ca/school

	Chapter/Section	Pages
• communicate solutions in established mathematical	Chapter 7	278-333
form, with clear reasons given for the steps taken.		

Measurement and Geometry

Overall Expectations

By the end of this course, students will:

- determine the optimal values of various measurements through investigations facilitated by the use of concrete materials, diagrams, and calculators or computer software;
- solve problems involving the measurement of two-dimensional figures and three-dimensional objects;
- formulate conjectures and generalizations about geometric relationships involving two-dimensional figures, through investigations facilitated by dynamic geometry software, where appropriate.

Specific Expectations

	Chapter/Section	Pages
Investigating the Optimal Values of Measurements		
By the end of this course, students will:		
• construct a variety of rectangles for a given perimeter	2.5	64–71
and determine the maximum area for a given perimeter;		
• construct a variety of square-based prisms for a given	3.3	92–99
volume and determine the minimum surface area for a	3.5	106-111
square-based prism with a given volume;		
• construct a variety of cylinders for a given volume and	3.4, 3.5	100-111
determine the minimum surface area for a cylinder with		
a given volume;		
• describe applications in which it would be important to	3.4, 3.5	100-111
know the maximum area for a given perimeter or the		
minimum surface area for a given volume (e.g., building		
a fence, designing a container).		
Solving Problems Involving Measurement		
By the end of this course, students will:		
• solve problems involving the area of composite plane	2.4	54-63
figures (e.g., combinations of rectangles, triangles,		
parallelograms, trapezoids, and circles);		
• solve simple problems, using the formulas for the	3.1, 3.2	80-105
surface area of prisms and cylinders and for the volume	3.3, 3.4	
of prisms, cylinders, cones, and spheres;		
• solve problems involving perimeter, area, surface area,	1.1, 1.4	4-10, 22-27
volume, and capacity in applications;	2.1, 2.3, 2.4	36-41, 48-63
	3.3, 3.4	92–105
 judge the reasonableness of answers to measurement 	throughout	36-118
problems by considering likely results within the	Chapter 2 and 3	
situation described in the problem;		
• judge the reasonableness of answers produced by a	1.2	10-15
calculator, a computer, or pencil and paper, using mental	throughout	1-118
mathematics and estimation.	Chapters 1–3	

Investigating Geometric Relationships		
By the end of this course, students will:		
 illustrate and explain the properties of the interior and exterior angles of triangles and quadrilaterals, and of angles related to parallel lines; 	11.1 11.2	440–449 450–457
 determine the properties of angle bisectors, medians, and altitudes in various types of triangles through investigation; 	11.3	458–466
• determine some properties of the sides and the diagonals of quadrilaterals (e.g., the diagonals of a rectangle bisect each other);	11.4	467–473
• communicate the findings of investigations, using appropriate language and mathematical forms (e.g., written explanations, diagrams, formulas, tables).	throughout Chapter 11	438–477