CHAPTER 4 Equations
4.4 Modelling With Formulas

Rearranging Formulas to Isolate Variables

Example:

a) Businesses calculate profit P in terms of revenue R and costs C using the formula $P=R-C$. Rearrange this formula to express R in terms of P and C. Then, find the revenue required to make a profit of $\$ 500$ when costs are $\$ 1800$.
b) The cost of storing a boat at the Municipal Marina is calculated using the formula $\mathrm{C}=50 \mathrm{~m}+10$, where m is the storage time in months, and I is the length of the boat in metres. Rearrange this formula to express the time in months in terms of the cost and the length of the boat. Rudy has a $12-\mathrm{m}$ boat, and has budgeted $\$ 420$ for storage costs. How long can he store the boat for?

Solution:

a) $\quad \mathrm{P}=\mathrm{R}-\mathrm{C}$
$P+C=R-C+C$

$P+C=R$
$R=P+C$
$R=500+1800$

$$
=2300
$$

A revenue of $\$ 2300$ is required to make a profit of $\$ 500$ when costs are $\$ 1800$.
b)

$$
\begin{aligned}
C & =50 m+10 I \\
C-10 I & =50 m+10 I-10 I \\
C-10 I & =50 m \\
\frac{C-10 I}{50} & =\frac{50 \mathrm{~m}}{50} \\
\frac{C-10 I}{50} & =m \\
m & =\frac{C-10 I}{50} \\
& =\frac{420-10 \times 12}{50} \\
& =\frac{420-120}{50} \\
& =6
\end{aligned}
$$

Rudi can store his boat for 6 months for $\$ 420$.

Practice:

1. On a trip to the USA, Belinda calculated the relation between litres and US gallons using the formula $\mathrm{L}=3.79 \mathrm{G}$. Rearrange this formula to express gallons in terms of litres. The fuel tank of Belinda's car holds 60 L . Find the capacity of the fuel tank in gallons.
2. The pilot of a commercial aircraft approaching an airport calculates the time to landing t , in minutes, from the formula $t=\frac{h}{d}$, where h is the altitude, in metres, and d is the rate of descent, in metres per minute. Rearrange the formula to express d in terms of t and h. Then, find the rate of descent required to land in 10 min from an altitude of 800 m .

Answers:

1. $G=\frac{L}{3.79}, 15.8 \mathrm{gal}$
2. $\mathrm{d}=\frac{\mathrm{h}}{\mathrm{t}}, 80 \mathrm{~m} / \mathrm{min}$
