CHAPTER 8: Measurement Relationships

8.4 Surface Area of a Cone

Surface Area of a Cone
The slant height s of a cone can be determined from the height h and the radius r using the Pythagorean theorem.

The formula for the surface area of a cone is
 $\mathrm{SA}=\pi \mathrm{rs}+\pi \mathrm{r}^{2}$.

Example:

a) Sawdust from a woodworking shop is blown into a conical hopper for recycling into other products. The hopper has a radius of 1.5 m and a height of 2 m . Find the area of

b) The sides of the hopper will be painted to make it more attractive. A can of spray paint covers $3 \mathrm{~m}^{2}$. How many cans are required to paint the sides of the hopper?

Solution:

a) $\mathrm{s}^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$

$$
\begin{aligned}
& =2^{2}+1.5^{2} \\
& =6.25 \\
\mathrm{~S} & =2.5 \mathrm{~m} \\
\mathrm{SA} & =\pi \mathrm{rs}+\pi \mathrm{r}^{2} \\
& =\pi \times 1.5 \times 2.5+\pi \times 1.5^{2} \\
& =18.8 \mathrm{~m}^{2}
\end{aligned}
$$

The area of aluminum needed to make the hopper is $18.8 \mathrm{~m}^{2}$.
b) $\mathrm{A}=\pi \mathrm{rs}$

$$
\begin{aligned}
& =\pi \times 1.5 \times 2.5 \\
& =11.8 \mathrm{~m}^{2}
\end{aligned}
$$

The lateral area is $11.8 \mathrm{~m}^{2}$. Therefore, $\frac{11.8}{3} \doteq 4$ cans of spray paint will be needed to paint the sides.

Practice:

1. a) A decorative candle was made in the shape of a cone with a base diameter of 10 cm and a height of 12 cm . Find the surface area of the candle.
b) The sides of the candle will be brushed with liquid sparkle. If a 10 mL bottle of liquid sparkle covers $50 \mathrm{~cm}^{2}$, how many bottles are required?

Answers:

1. a) $282.7 \mathrm{~cm}^{2}$
b) 5
