CHAPTER 8: Measurement Relationships
8.5 Volume of a Cone

Volume of a Cone
The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.
If you know the slant height s of a cone and the radius r, you can determine the height h using the Pythagorean theorem.

Example:

a) Randall bought two conical concrete markers for the entrance to his driveway. Each had a radius of 0.4 cm and a height of 0.8 cm . How much concrete was needed to make the markers?

b) Indira has purchased a 5 L bag of peanuts. She plans to pour the peanuts into conical cups with a radius of 4 cm and a slant height of 13 cm to sell at the town fair. How many cups can she fill?

Solution:

a) $\quad V=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 0.4^{2} \times 0.8 \\
& =0.13 \mathrm{~m}^{3}
\end{aligned}
$$

The volume of concrete needed is $2 \times 0.13=0.26 \mathrm{~m}^{3}$.

b)
$s^{2}=r^{2}+h^{2}$
$13^{2}=4^{2}+h^{2}$
$169=16+h^{2}$
$169-16=16+h^{2}-16$

$$
\begin{aligned}
\mathrm{V} & =\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& =\frac{1}{3} \times \pi \times 4^{2} \times 12.4 \\
& =207.8 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
153=h^{2}
$$

$12.4 \mathrm{~cm}=\mathrm{h}$

The bag holds 5 L or $5000 \mathrm{~cm}^{3}$ of peanuts.

$$
\frac{5000}{207.8}=24.1
$$

Indira can fill 24 cups completely.

Practice:

1. a) The recycling bin for cans in a school cafeteria was made in the shape of a cone with a diameter of 1 m and a slant height of 1.3 m . Find the volume of empty cans that the bin can hold.

b) While working on a road crew, Amanda was placing conical markers, each of which had a diameter of 40 cm and a height of 60 cm . Josh made a bet that he could drink all of the water that a marker could hold, if it was inverted and filled with water. How many litres of water would he need to drink?

Answers:

1. a) $0.31 \mathrm{~m}^{3}$ b) 25.1 L
