CHAPTER 8: Measurement Relationships 8.6 Surface Area of a Sphere Surface Area of a Sphere The formula for the surface area of a sphere with radius *r* is $SA = 4\pi r^2$.

If you know the surface area of a sphere, you can determine the radius r, of a sphere.

Example:

a) A spherical storage tank has a radius of 8 m. Find the surface area of the tank.

b) A can of paint covers 20 m² and costs \$30. How much will it cost to paint the tank?

c) A new tank will be built with a surface area of 2000 m^2 . What radius will be required?

Solution:

a)
$$SA = 4\pi r^2$$

= $4 \times \pi \times 8^2$
= 804.2 m²

The surface area of the tank is 804.2 m².

b)
$$\frac{804.2}{20} = 40.2$$

The city will need to buy 41 cans of paint.

The cost will be $41 \times 30 = 1230 .

c)
$$SA = 4\pi r^2$$

 $2000 = 4\pi r^2$
 $\frac{2000}{4\pi} = \frac{4\pi r^2}{4\pi}$
 $159.2 = r^2$
 $12.6 \text{ m} = r$

The new tank requires a radius of 12.6 m.

Practice:

1. a) The envelope of a hot air balloon can be approximated with a sphere with a radius of 12 m. Find the area of Dacron required to make the balloon.

b) Balloon quality Dacron sells for \$5/m². How much does it cost to buy the Dacron for the balloon?

c) A smaller balloon has a surface area of 1000 m^2 . What is the radius of this balloon?

Answers:

1. a) 1809.6 m² b) \$9047.79 c) 8.9 m