CHAPTER 8: Measurement Relationships
8.6 Surface Area of a Sphere

Surface Area of a Sphere
The formula for the surface area of a sphere with radius r is $S A=4 \pi r^{2}$.
If you know the surface area of a sphere, you can determine the radius r, of a sphere.

Example:

a) A spherical storage tank has a radius of 8 m . Find the surface area of the tank.
b) A can of paint covers $20 \mathrm{~m}^{2}$ and costs $\$ 30$. How much will it cost to paint the tank?
c) A new tank will be built with a surface area of $2000 \mathrm{~m}^{2}$. What radius will be required?

Solution:

a) $\mathrm{SA}=4 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =4 \times \pi \times 8^{2} \\
& =804.2 \mathrm{~m}^{2}
\end{aligned}
$$

The surface area of the tank is $804.2 \mathrm{~m}^{2}$.
b) $\frac{804.2}{20}=40.2$

The city will need to buy 41 cans of paint.
The cost will be $41 \times 30=\$ 1230$.
c) $\quad \mathrm{SA}=4 \pi \mathrm{r}^{2}$

$$
2000=4 \pi r^{2}
$$

$$
\frac{2000}{4 \pi}=\frac{4 \pi r^{2}}{4 \pi}
$$

$159.2=r^{2}$
$12.6 \mathrm{~m}=\mathrm{r}$
The new tank requires a radius of 12.6 m .

Practice:

1. a) The envelope of a hot air balloon can be approximated with a sphere with a radius of 12 m . Find the area of Dacron required to make the balloon.
b) Balloon quality Dacron sells for $\$ 5 / \mathrm{m}^{2}$. How much does it cost to buy the Dacron for the balloon?
c) A smaller balloon has a surface area of $1000 \mathrm{~m}^{2}$. What is the radius of this balloon?

Answers:

1. a) $1809.6 \mathrm{~m}^{2}$
b) $\$ 9047.79$
c) 8.9 m
