CHAPTER 8: Measurement Relationships
8.7 Volume of a Sphere

Volume of a Sphere
The formula for the volume of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.
You can calculate the empty space in a container by subtracting the volume of the object from the volume of the container in which it is packaged.

Example:

a) A tennis ball has a radius of 3.2 cm . Find the volume of the ball.
b) A dozen tennis balls were placed in a box such that they just fit, forming a single layer 3 balls by 4 balls.. How much empty space was left in the box?

Solution:

a) $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times 3.2^{3} \\
& =137.3 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of a tennis ball is $137.3 \mathrm{~cm}^{3}$.
b) The diameter of a tennis ball is $2 \times 3.2=6.4 \mathrm{~cm}$.

The length of the box is $4 \times 6.4=25.6 \mathrm{~cm}$.
The width of the box is $3 \times 6.4=19.2 \mathrm{~cm}$.
The height of the box is 6.4 cm .

$$
\begin{aligned}
V & =I w h \\
& =25.6 \times 19.2 \times 6.4 \\
& =3145.7 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of the box is $3145.7 \mathrm{~cm}^{3}$.
The volume of the dozen tennis balls is $12 \times 137.3=1647.6 \mathrm{~cm}^{3}$.
The volume of empty space left in the box is $3145.7-1647.6=1498.1 \mathrm{~cm}^{3}$.

Practice:

1. a) A basketball has a diameter of 0.24 m . Find the volume of the basketball.
b) A classroom measures 12 m by 9.6 m by 4.8 m . How many basketballs could it hold, using a rectangular pattern?
c) If the room were filled with basketballs, how much empty space would remain in the classroom?

Answers:

1. a) $0.0072 \mathrm{~m}^{3}$
b) 40000 basketballs
c) $263.4 \mathrm{~m}^{3}$
