CHAPTER 9: Optimizing Measurements
9.3 Minimize the Surface Area of a Square-Based Prism Minimizing the Surface Area of a Square-Based Prism

For a square-based prism with a given volume, the minimum surface area occurs when the prism is a cube.
Given a volume, you can find the dimensions of a square-based prism with minimum surface area by solving for s in the formula $V=s^{3}$, where V is the given volume and s is the length of a side of the cube.

Example:

a) Farmer Macdonald is planning to build a new grain storage bin in the shape of a square-based prism, with a desired capacity of $1000 \mathrm{~m}^{3}$. In order to minimize construction costs, he would like to minimize the surface area of the bin. Show that this occurs when he uses a cubical bin with a side length of 10 m .

b) A new strawberry-kumquat fruit drink is to be sold in 1 L cardboard packages with square bases and a minimum surface area. Find the dimensions of the package required.

Solution:

a) Use pencil and paper, a graphing calculator, a spreadsheet, or other aid to construct a table of possible dimensions. Look for a minimum surface area with a constant volume of $1000 \mathrm{~m}^{3}$. This occurs for a cube with a side length of 10 m .

Base (m)	Height (m)	Volume $\left(\mathrm{m}^{3}\right)$	Surface Area $\left(\mathbf{m}^{2}\right)$
7.0	20.4	1000	669.43
8.0	15.6	1000	628.00
9.0	12.3	1000	606.44
10.0	10.0	1000	600.00
11.0	8.3	1000	605.64
12.0	6.9	1000	621.33
13.0	5.9	1000	645.69

b) The volume of the box is $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$. The minimum surface area occurs when the shape is a cube.

$$
\begin{aligned}
s & =\sqrt[3]{V} \\
& =\sqrt[3]{1000} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

The side length of the cube is 10 cm .

Practice:

1. a) Peanuts are sold at the ball park in lidless boxes with square bases. If each box holds $300 \mathrm{~cm}^{3}$ of peanuts. Find the dimensions that minimize the surface area.
b) A new office building is to be designed in the shape of a square-based prism for an interior volume of $27000 \mathrm{~m}^{3}$. If the architect wants a minimum surface area, what dimensions should the building have?

Answers:

1. a) $\mathrm{b}=8.5 \mathrm{~cm}, \mathrm{~h}=4.2 \mathrm{~cm}$
b) cube, $\mathrm{s}=30 \mathrm{~m}$
