CHAPTER 9: Optimizing Measurements
9.4 Maximize the Volume of a Square-Based Prism Maximizing the Volume of a Square-Based Prism

The maximum volume for a given surface area of a square-based prism always occurs when the prism is a cube.
The surface are of a cube is given by the formula $S A=6 s^{2}$, where s is the side length of the cube. When you are given the surface area, solve for s to find the dimensions of the square-based prism with maximum volume.

Example:

a) Edwin is planning to sell his home-made raisins at the local fair. To keep costs down, he will make his own boxes, budgeting $240 \mathrm{~cm}^{2}$ of cardboard for each box. Show that he can maximize the volume of the box by using a cube with a side length of 6.3 cm .

b) Raneeta is planning to hold a "guess the number of gumballs" contest in her candy store. She will make a square-based Lucite box to hold the gumballs for display in the window. The box will have a bottom and sides, but no top. If she has $420 \mathrm{~cm}^{2}$ of Lucite, find the dimensions of the square-based box that maximum the volume.

Solution:

a) The volume will be a maximum when a cube is used.

$$
\begin{aligned}
S A & =6 s^{2} \\
240 & =6 s^{2} \\
\frac{240}{6} & =\frac{6 s^{2}}{6} \\
40 & =s^{2} \\
6.3 & =s
\end{aligned}
$$

The side length of the required cube is 6.3 cm .
b) Use pencil and paper, a graphing calculator, a spreadsheet, or other aid to make a table of possible dimensions. The volume is a maximum with a base length of 11.8 cm and a height of 5.9 cm .

Base (cm)	Height (cm)	Volume $\left(\mathrm{cm}^{3}\right)$	Surface Area $\left(\mathbf{c m}^{2}\right)$
11.5	6.3	827.28	420
11.6	6.2	827.78	420
11.7	6.0	828.10	420
11.8	5.9	828.24	420
11.9	5.8	828.21	420
12.0	5.8	828.00	420

Practice:

1. a) A package of gift wrap covers an area of $3 \mathrm{~m}^{2}$. Renata wants to wrap a present in the shape of a square-based prism. What is the maximum volume of the present that she can wrap?
b) Nigel is weaving the basket for a hot air balloon in the shape of a square-based prism. He estimates that he has enough willow branches to weave $20 \mathrm{~m}^{2}$. The basket will have a bottom and four sides, but no top. Find the dimensions that maximum the volume of the basket.

Answers:

1. a) $0.35 \mathrm{~m}^{3}$
b) $\mathrm{b}=2.6 \mathrm{~m}, \mathrm{~h}=1.3 \mathrm{~m}$
