CHAPTER 9: Optimizing Measurements
9.5 Maximize the Volume of a Cylinder

Maximizing the Volume of a Cylinder with a Given Surface Area
The maximum volume for a given surface area of a cylinder occurs when its height equals its diameter.
The dimensions of the cylinder with maximum volume for a given surface area can be found by solving the formula $S A=6 \pi r^{2}$ for r. The height will be $2 r$.

Example:

a) Outdoors Unlimited sells a line of trail foods packaged in cylindrical cans. Each can is made from $360 \mathrm{~cm}^{2}$ of metal. The design of the can maximizes the volume. Find the radius of the can.
b) What is the maximum amount of food that each can holds?

Solution:

a) $\mathrm{SA}=6 \pi \mathrm{r}^{2}$
$360=6 \pi r^{2}$
$\frac{360}{6 \pi}=\frac{6 \pi \mathrm{r}^{2}}{6 \pi}$
$19.1=r^{2}$
$4.4=r$
The radius of the can with maximum volume is 4.4 cm .
b) $V=\pi r^{2} h$

$$
\begin{aligned}
& =\pi r^{2}(2 r) \\
& =2 \pi r^{3} \\
& =2 \pi(4.4)^{3} \\
& =535.2
\end{aligned}
$$

The maximum amount of food that each can holds is $535.2 \mathrm{~cm}^{3}$.

Practice:

1. a) A cylindrical silo was constructed using $75 \mathrm{~m}^{2}$ of corrugated steel. The dimensions were chosen such that the volume was a maximum. Find the radius of the silo.
b) Find the volume of the silo.

Answers:

1. a) 2.0 m
b) $50.3 \mathrm{~m}^{3}$
