

C Programming
a Q&A Approach

H.H. Tan

T.B. D’Orazio
S.H. Or

Marian M. Y. Choy

Additional Reading Material

Prepared by Marian M. Y. Choy

© 2012 by McGraw-Hill Education (Asia). Permission required for reproduction or display.

1

Chapter 2

GETTING STARTED

Introduction
Mobile phones are so popular in that they are considered as a part of our life. There
are a number of ways to call someone: key in a number to dial, dial a number from the phone
book, speed dial, or even voice dial. To call Kate from the phone book, her number must have
been stored in the phone book. To store Kate's number, memory is needed, either in the mobile
phone or in the sim card. If we do not store a number in the phone book, then we need to key in
the number each time to dial that number. You may wonder, even if this number does not exist
in the phone book, it will appear in the recently dialed list after you have made the call, and
there is no need to store it in the phone book. This is true only if this number always remains
"recently dialed". In fact, the recently dialed list takes up memory.
 In programming, we need to store a piece of information (e.g. a value) for later use.
"Variable" and "constant" are terms which refer to this kind of storage. Value associated with a
constant cannot be changed, whereas value associated with a variable can be changed during the
execution of the program. In this chapter, we are going to learn about storing information to
memory, retrieving information from memory, and a few programming skills as a kick start to
program writing.

Good programming style
We all know the benefits of good programming styles. In practice, what can we do to achieve
this?
 I. Comprehensive comments. Make use of comments to help reader know what's going
on with your program. Let's look at this program [C02_style_v1.c]:

#include <stdio.h>
void main ()
{

 Getting Started 2

 int classes, people, mark, sum, i;

 scanf ("%d", &classes);
 while (classes > 0) {
 sum = 0;
 scanf ("%d", &people);
 for (i=0; i<people; i++) {
 scanf ("%d", &mark);
 sum += mark;
 }
 printf ("average: %.2f\n", sum*1.0/people);
 classes--;
 }
}

Figure 0.1 Program without comment

 There is no comment in this program. According to our knowledge in C at this stage, we
could not understand. For long programs, even we know all the skills, more time is needed to
understand a program without comment. In the program below [C02_style_v2.c], comments are
added, if you just follow the comments, you will be able to get a rough idea about what this
program is about without knowing all the technical details.

#include <stdio.h>
void main ()
{
 int classes; /* number of classes */
 int people; /* number of students */
 int mark; /* the mark of a student */
 int sum; /* the sum of mark of a class */
 int i; /* counter */

 scanf ("%d", &classes); /* get number of classes */
 while (classes > 0) { /* not every class is processed */
 sum = 0; /* reset sum to zero */
 scanf ("%d", &people);

 /* perform this for each student in that class */
 for (i=0; i<people; i++) {
 scanf ("%d", &mark); /* read his/her mark */
 sum += mark; /* calc sum */
 }

 /* calc and display average mark of that class */
 printf ("average: %.2f\n", sum*1.0/people);

Getting Started 3

 classes--;
 }
}

Figure 0.2 Program being over commented

 When we write comments, avoid writing too much, we are not writing a report! Besides,
we assume others know C, so we just use comments to highlight key features of the program or
some special ideas we have used in creating the solution. Actually, the comments written in the
above program is a bit too much for a simple program. The following [C02_style_v3.c] has
enough comments for this purpose:

#include <stdio.h>
void main ()
{
 int classes; /* number of classes */
 int people; /* number of students */
 int mark; /* the mark of a student */
 int sum; /* the sum of mark of a class */
 int i; /* counter */

 scanf ("%d", &classes); /* get number of classes */
 while (classes > 0) {
 sum = 0; /* reset sum to zero */
 scanf ("%d", &people);
 for (i=0; i<people; i++) {
 scanf ("%d", &mark);
 sum += mark; /* calc sum */
 }

 /* calc and display average mark of that class */
 printf ("average: %.2f\n", sum*1.0/people);
 classes--;
 }
}

Figure 0.3 Program having appropriate comments

 II. Meaningful names. Meaningful name has similar purpose as comments, it allows
reader to comprehend the program within a shorter time. Examples:

• studentID is more meaningful than id
• sum is more meaningful than x
• area is more meaningful than a

 Getting Started 4

Besides these, we can make use of mixture of small letters, CAPITAL letters and digits to create
meaningful names. Examples:

• num2word /* convert number to word */
• avgMark /* average mark */
• dayOfWeek /* day of week */

 III. Organized layout with proper spaces and indentation. How you line up the
programming statements will affect the readability of the program. Make use of indentation
(i.e. use of tab), space, empty lines to organize the layout, as well as matching of parenthesis. If
we make use of all these to organize the messy program in lecture notes, it is more organized
(although we still have to work on the naming and commenting). Don't worry about the
technical details of this program [C02_organized.c]:

#include<stdio.h>
#include<stdlib.h>

char c[27],v[27],r1[26],r2[26];

int sn(char n,int ii)
{
 int i=0;

 while (i<ii) {
 if (c[i] == n)
 return i;
 else
 i++;
 }
 return 0;
}

void main()
{
 long cc;
 int i,s,E,p,r,q;
 char ss[50000],e[50000],C;

 scanf ("%d", &cc);
 while (cc>0) {
 scanf ("%d%d", &r, &q);
 for (i=0; i<r; i++) {
 scanf ("%s%s", ss, e);
 c[i] = e[0];
 v[i] = ss[0];

Getting Started 5

 }
 for (i=0; i<q; i++) {
 scanf ("%s%s", ss, e);
 r1[0] = ss[0];
 C = ss[0];
 s = 0;
 while (C != 'R') {
 p = sn (C, r);
 C = v[p];
 s++;
 r1[s] = C;
 }
 r2[0] = e[0];
 C = e[0];
 E = 0;
 while (C != 'R') {
 p = sn (C, r);
 C = v[p];
 E++;
 r2[E] = C;
 }
 while (s>=0 && E>=0 && r1[s]==r2[E]) {
 s--;
 E--;
 }
 s++;
 for (p=0; p<=s; p++)
 printf ("%c", r1[p]);
 for (p=E; p>=0; p--)
 printf ("%c", r2[p]);
 printf ("\n");
 }
 cc--;
 if (cc>0) {
 printf ("\n");
 }
 }
}

Figure 0.4 Program being properly organized

 Getting Started 6

Compilation errors
FOLLOW ME
Let's explore some compilation errors using the program L02_bucket_v3.c.

Line #
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#include <stdio.h>
#define PI 3.141592653589793

void main()
{
 double radius, base;
 int height;

 printf ("How big is your bucket?\n");
 printf ("Enter radius and height: ");
 scanf ("%lf%d", &radius, &height);

 printf ("Base area = PI * r * r");
 base = PI * radius * radius;
 printf (" = %.2f\n", base);
 printf ("Volume = %.2f\n", base * height);
}

Figure 0.5 Program L02_bucket_v3.c used to explore compilation errors

You can download this file from the C resources in the course web. Follow the instructions
below to explore different compilation errors with this program.

Error #1
Rename radius in line 13 to radii. Compile the program. What does the compiler say?
Note, there are 1 error and 1 warning. Read the error, what does it mean? Double click the
error message and the cursor will jump to the error line (line 18). Why does the compiler say
radius is undeclared? What do you think the warning means?

When the compiler says "undeclared identifier 'radius'", it means it does not
understand what radius is, because the program does not define (or in technical
term: declare) it.
 Sometimes, when we declared a variable but did not use it in the program, the
compiler will give us warning, in this case we know that maybe that variable (e.g.
radii) is redundant, or maybe we have made a typing mistake (e.g. radius to
radii) in such a way that compiler misunderstands radii is useless.

Getting Started 7

Error #2
Correct the above error and make the program error-free again. Now, delete the semi-colon (i.e.
;) at the end of the scanf () function in line 18. Compile the program. What is the error
this time?

Error #3
Correct the above error and make the program error-free again. Now, rename #include into
#includes. There are three warnings when you compile, what do they say?

Error #4
Correct the above error and make the program error-free again. Now, remove the # from
#include. How many errors and warnings the compiler give you this time? Try to read each
error and warning and see if you understand them all.

 From this exercise, you have some experiment with understanding errors and making
corrections. Please aware that the compiler will try its best to understand our program and
"guess" the errors, but not every "guess" is absolutely correct. So, you need to look around too!
That is, after you double click the error and know where it is, scan through a few lines above
and a few lines below that location, so that you will know more about the "guessed error" from
the compiler, and be able to make appropriate judgment and corrections.

scanf () - reads user input
scanf () is a function for reading user input via the keyboard, whereas printf () is a
function for displaying information to the screen. Both are considered as input / output tools.
So, is there any difference or similarity in the use of scanf () and printf ()?

Compiler will try its best to predict the locations of all errors. In this case, it is
looking for ';', and keeps searching until the end of line 18. No trace of ';' is
found, instead saw printf at the start of line 20. This is what the compilation
error tells us.

Because of the misspell of include, the compiler does not understand this new
preprocessing command. Besides, without the standard IO library, the compiler
does not know about printf () and scanf () functions.

Because of one single error, a lot of error / warning messages can be resulted. So,
do not panic if you see a lot of error messages, maybe all these are due to a few real
errors.

 Getting Started 8

 Formatting control string in printf Formatting control string in scanf
int %d %d
char %c %c
double %f %lf

Table 0.1 Formatting control string in printf () and scanf () for fundamental data types

 Actually, printf () and scanf () use the same formatting for all data types in their
control strings, except for double, which is the only difference. Besides, address operator & is
needed to read a value into the storage area, and we use this a lot in scanf () function.
However, there are exceptions, we will discuss more later in the course.

FOLLOW ME
Try the program C02_money_v1.c and input 2000, note down the response from this program.
Now, remove & from the argument of scanf (). Compile (there is no error message!) and
run this program with the same 2000 as input. What did the program response this time? Why
the response is different when & is missing?

Let's investigate the & operator in this scanf (). Suppose, the address of hkDollar is 5000
(i.e. &hkDollar is 5000).

scanf ("%d", &hkDollar);

The user enters 2000 at the prompt. After executing the above scanf (), the memory
becomes:

Memory location Memory content
4999 ...
5000 (address of hkDollar) 2000 (value stored at this address)
5001 ...

On the other hand, if we have this program segment:

hkDollar = 1999; /* just give it a value */
scanf ("%d", hkDollar); /* & is missing */

& is the address operator. The programming statement

scanf ("%d", &hkDollar);

will store the user input into the variable hkDollar. Where is this variable
located? Inside the computer memory. Where about in the computer memory is
this variable located? At the location &hkDollar. The address operator will
find out the address of this variable, so that the computer knows where to store the
value.

Getting Started 9

The user again enters 2000 at the prompt. After executing the above statement, the memory
becomes:

Memory location Memory content
1999 2000
2000 ...
: ...
5000 (address of hkDollar) 1999

After the first statement, hkDollar becomes 1999. Then, in the second statement, the value
2000 from the user is stored at address 1999, which is a wrong location!! Why? It is because &
is missing when calling the scanf () function. Without the & operator, the computer will
treat the value of hkDollar (i.e. 1999) as the address, and stores the user input in that
location.

CHECK THIS OUT
To read two numbers, what is the difference between "%d%d", "%d %d", and "%d-%d" in the
control string of scanf () function?

Now, consider the following program [C02_seat.c]:

#include <stdio.h>
void main()
{
 int row;
 char seat;
 scanf ("%d%c", &row, &seat);
 printf ("===%d%c===", row, seat);
}

Figure 0.6 A program displaying the input information

When we use "%d%d" in the control string, it will read two integers, one after the
other. Normally, the user will type two integers with a space in between, and then
hit the Enter key (we are going to use [Enter] to denote the Enter key in the rest of
this workbook). The computer is capable to differentiate the numbers from the
space. Therefore, "%d %d" is not preferred.
 "%d-%d" is used when we expect the user to input two integers with
formatting information, e.g. we want the user to enter a date in dd-mm format, like
14-7. In this case, by including - in the control string, only one scanf () is
needed.

 Getting Started 10

FOLLOW ME
Run the program and input 20A, what's the output? Now, duplicate the two programming
statements and make this program performs the same action two times. Run the program and
input 20A[Enter]30B. How does the program response? Now, swap the input order in the
second scanf () to something like this:

#include <stdio.h>

void main()
{
 int row;
 char seat;

 scanf ("%d%c", &row, &seat);
 printf ("===%d%c===", row, seat);

 scanf ("%c%d", &seat, &row); /* change the input order */
 printf ("===%d%c===", row, seat);
}

Figure 0.7 A modified program to display the input information

 Run the program and input 20A[Enter]B30, how does the program response this time? The
computer does not response correctly in the last try. A second 20 is displayed instead of 30, and
B is missing. Why did 30B get eaten up by the program? In the last try, we have entered:

20A[Enter]B30

through the keyboard. The enter key on the keyboard is considered as a character too, therefore,
data are being captured like this:

20A[Enter]B30

%d of first scanf () - tries to capture the number 20
%c of first scanf () - tries to capture the character A
%c of second scanf () - tries to capture the character [Enter]
%d of second scanf () - tries to capture the character B

 The first scanf ()works ok. However, [Enter] is considered a character, therefore it is
captured by %c of the second scanf (). Following this, the character B is captured by %d of
the second scanf (). The computer cannot understand B as an integer, therefore nothing is
stored in the variable row. As a result, the value of row remains unchanged and stays as 20.

Getting Started 11

Tokens of C
FOLLOW ME
Let's check out other tokens of C from help. Open Help window in Pelles C: Help >> Contents
>> C99 language reference >> Elements of C >> Keywords. You will see a number of
keywords used by C. We are going to learn a lot, but not all of them in the course. For your
interest, you might like to look inside a few that you are familiar with and check out the details.

More on operators
CHECK THIS OUT
What is the result of 16 / 3? To answer this in C, we need to ask, "What do you want? Do you
want an integer result or do you want a real number?" Let's say,

int ansInt;
ansInt = 16/3;

Both 16 and 3 are integers, therefore the answer from this division is an integer. So, is ansInt
= 5 or 6 after the division? Should be 5, because this is an integer division, therefore, the
computer will take care of the integer result only.
 What if we make the variable ansReal a double instead of an int, the program
segment becomes:

double ansReal;
ansReal = 16/3;

This time, ansReal is a real number, what will ansReal be after the division? Should be 5
again. Why?? Both numbers involved in the division are integers, therefore result is definitely
an integer, no matter what kind of data type we use to store it.
 How can I get the answer in real number? Try this:

double ansReal;
ansReal = 16.0/3;

By changing 16 to 16.0, we have a real number divides an integer, and the result will become a
real number. Actually, there is another way to do this, we will learn more in the second half of
the course.
 The reasoning for 16 / 3 applies to 16 * 3 as well. As for 16 % 3, this is a modulus operator
for the calculation of remainder, it only works for integers (why?). So we do not need to
consider the case for real numbers.

 Getting Started 12

Increment and decrement operators
Be extra careful when using ++ or -- operators. Just a++ alone is easy to understand,
however, when we have b = a++, it starts to get complex. From lecture, we know that this is
indeed two steps combined into one programming statement. First action: cover ++ with your
fingertip and the programming statement will perform according to what you see now (i.e.
b=a;). Second action: computer will then perform a++. The same goes with -- operator.

CHECK THIS OUT
Assume all a, b, c below are integers. Find out their values after each programming statement.
You can write a program similar to the one in the lecture notes to check your answer.

Program segment Value of a Value of b Value of c
c = 5;

a = c++;

b = 3 * (a--) - c;

C = (b++) + a;

Your challenge

201 Refer to the program [C02_seat.c] discussed above, if the user input remains unchanged:

20A[Enter]B30

and we want the output to look like this:

===20A===
===30B===

Can you suggest a way to modify the program so that the output is as expected above?

202 Explore those programs we have learnt up to this stage, see if you can discover other
possible compilation errors and explain the linkage between the error and the error message
reported by the compiler.

203 With the use of scanf, construct a flexible program for Paul's investment queries. He wants
to find out how much he will get after five months under different investment conditions.

