
C H A P T E R

9
An Introduction to C++

The C++ language was developed at Bell Laboratories in the early 1980s by Bjarne
Stroustrup. The language is more than an extension of the powerful C language.
It is an object-oriented programming language, whereas C is considered to be
a pro cedural language. However, C is a subset of C++. That is, C programs can
be compiled using a C++ compiler. The reverse is not true, meaning that C++
programs cannot be compiled using a pure C compiler.

C++ was developed so that object-oriented concepts such as encapsulation,
inheritance and polymorphism could be used. We do not want to get into the details
at this point. The best way to understand the capabilities of C++ is to examine a
number of C++ programs.

This short chapter is not an exhaustive description of the C++ language.
Instead, it introduces only the major features of C++, gives you the feel and look
of the lan guage, provides examples and demonstrates how to use the language
to solve practi cal problems. To do all these things in just one chapter, we have
deliberately avoided details and have not always followed standard practice.
There is no ANSI standard for C++ currently although it exists for C. Despite
these shortcomings, after reading this chapter, you will be well on your way to
becoming an accomplished C++ programmer.

Some of the exercises in this chapter ask you to rewrite the programs written
in C from the previous chapters. This approach allows you to concentrate on the
C++ language itself instead of merely understanding the structure or algorithm
of the program. In addition, it helps you understand how C++ can enhance and
improve your C programs.

Now that you have come to this chapter, you must be adept at reading and
understanding code. Therefore, we limit our introductory comments for each
lesson and expect you to read all the notations in the code and the code itself.
Read the explanations while referring back to the code, and do the exercises.

Lesson 9.1 C++ Comments and Basic Stream
Input and Output

Topics

• Writing C++ comments
• Using streams for standard input and output

Ch09IT.indd 1 16/09/2011 11:20 AM

 2  C Programming: A Q & A Approach

Let us now look at our first C++ program. This lesson’s program shows you how
to write C++ comments, receive input from the keyboard and dis play output on
the screen. Read the notations and the code to see how comments and input/
output (I/O) statements are written in C++.

Source Code

// This is a C++ comment

/* C++ supports C comments */

/* This is a C++ comment enclosed in // a C comment, it is acceptable but
 we recommend that you not mix C++ and C comments */

#include <stdio.h>
#include <iostream.h> // for cout, cin

void main(void)
{
 int age=21;
 float units = 16.0;
 char* name="Greg";

 printf("1. This is C++!\n");

 cout << "2. This is C++!\n\n";

 // Display Greg's age and units

 cout << name << " is " << age << " years old and his units are "<< units;

 // Get data from the input stream

 cout <<"\n\nPlease type your name and the number of units you have:";
 cin >> name >> units;
 cout<<"\nYour name is " << name <<" and your units are " << units;

 }

C++ comments begin with
the double-slash token.

Because C is a subset of C++,
we can use C comments in
C++ programs.

We can enclose a C++ comment in
C style comment delimiters
(/* and */). This allows us to easily
“comment out” sections of code when
debugging without being concerned
that we may have nested comments.

It is very convenient to put comments
at the end of a line in C++.

The C method for printing uses the printf function.

The C++ method for printing uses the << operator and cout.

We can use many << operators in one statement.

Only one variable or string is allowed between << operators. We
do not need to specify a format like %d or %lf for our variables.

Instead of the scanf function, we use the >>
operator and cin to read from the keyboard in C++.

In C++ we need iostream.h for input/output.

Ch09IT.indd 2 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 3

Output

 1. This is C++!
 2. This is C++!

 Greg is 21 years old and his units are 16.0

 Please type your name and the number of units you have:

Keyboard input Linda 15.0
 Your name is Linda and your units are 15.0

Explanation

1.	 How	 do	 we	 write	 C++	 comments?  We begin C++ comments with a
double-slash (//) token followed by a character string. Everything behind
the token (unless the token is inside a string or a C comment) to the end of
that line is the comment. For example,

// This is a C++ comment

 is a C++ comment (see Fig. 9.1).
 Note that C++ supports the C comment form, and you may enclose a

C++ com ment within a C comment. However, we recommend that you use
C++ comments for C++ programs and C comments for C programs. Also
notice that, if a comment is to extend over many lines, double slashes must
be written at the beginning of each line.

Chapter 9 An Introduction to C++ 3

Fig. 9.1  A first look at C++

/*This is a C comment*/

#include <stdio.h>

.....

printf("Please type your name");

scanf("%s",name);

.....

C

//This is a C++ comment

#include <iostream.h>

.....

cout << "Please type your name";

cin >> name;

.....

C++

Ch09IT.indd 3 16/09/2011 11:20 AM

 4  C Programming: A Q & A Approach

2.	 What	is	iostream.h	and	what	are	streams?  In C, the standard I/O routines
are defined in the header file stdio.h. In C++, the equivalent header file
is iostream.h. Streams are defined in this header file. In simple terms,
streams can be thought of as memory cells connected to external devices
such as the keyboard, screen or disk drive by the C++ I/O system. We can
communicate with these devices by filling or reading the memory cells. In
C++, this I/O concept allows us to read or fill the streams without regard
to the devices connected to them. Therefore, whether it is communicating
with a keyboard or a disk drive it is the same thing from the programmer’s
point of view.

 Both cout and cin are identifiers (defined in iostream.h) that, by default,
refer to the standard output stream (connected to the screen) and standard
input stream (connected to the keyboard), respectively. These streams are
automatically opened when a C++ program is executed and therefore
available for use in any programs that we write.

3.	 How	 do	 we	 send	 output	 to	 the	 screen?  In C++, we can still use the C
printf() function to display output on the screen. However, we can also
use cout and the << operator directly to accomplish the task (see Fig. 9.2).
The << operator is defined in C++ but not in C for use with I/O streams.
It is called the insertion operator. This operator sends data from the right
operand to where it is going (the cout stream). For instance, the statement

cout << “2. This is C++!\n\n”;

 sends the string “2. This is C++!\n\n” to the cout stream; then it is
automatically dis played on the screen.

 Note that you can use cout and the << operator to send any built-in data
type, such as char, short, int, long, char* (string), float, double, long double
or void*, to the output stream without using a format string. This system of
I/O is smart enough to detect the differences among the various data types
and display them correctly.

 You can use more than one << operator to output different types of data
after cout. Between two << adjacent operators, however, you can insert only
one item of data (expression or string). The operator associates from left to
right. For example, the statement

cout << name << “ is ” << age << “ years old and his units

are ” << units;

 displays a character string (name), an int (age), a float (units) and the string
con stants on the screen. The output stream displays

Greg is 21 years old and his units are 16.0

on the screen.

Ch09IT.indd 4 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 5

4.	 How	do	we	read	input	from	the	keyboard?  In C++, you can still use the C
scanf() function to read input from the keyboard. However, you also can use
cin and the >> operator directly to accomplish the task (see Fig. 9.2). The >>
operator is defined in C++ but not in C for use with I/O streams. It is called
the extractionoperator. For example, the statement

cin >> name >> units;

 sends the values (a string and a double data item) typed in at the keyboard
automatically to the cin stream and thus to the variables name and units.

 Note that you can use cin and the >> operator to send any built-in data
type, such as char, short, int, long, char* (string), float, double, long double
or void*, from the input stream without using a format string; this system of
I/O is smart enough to detect the differences among the various data types
and read them correctly. From the statement, notice that you can use more
than one >> operator to input different types of data after cin.

Fig. 9.2  Use of cout, cin, << and >> for input and output

C++
program

cout<< ...
Screen

cout

C++
program

cin>> ...

Keyboard

cin

Concept Recap

1. C++ comments start with the double-slash (//) token. Everything behind
the token to the end of that line is the comment.

2. In C++, the equivalent header file for stdio.h is iostream.h.
3. Output in C++ use cout and the << operator, for example,

cout << “Things to be out\n”;

Chapter 9 An Introduction to C++ 5

Ch09IT.indd 5 16/09/2011 11:20 AM

 6  C Programming: A Q & A Approach

4. Input from the keyboard is processed in a similar way as that in cout.

cin >> var1 >> var2;

Exercises

1. Rewrite the program from Lesson 2.2 with C++ comments instead of C com-
ments.

2. Use C++ I/O streams to read the following data from the keyboard:

char ‘A’
int 123
long 987654
double 3.141592
char[20] Welcome to C++!

 and display them on the screen.

Lesson 9.2 Manipulators and Formatting
Output

Topics

• Manipulators
• Basic iostream class

In the previous lesson, we used C++ I/O streams cin and cout with the << and
>> opera tors to perform basic standard input and output. They are easy to use;
however, the default format inherent in them may not be the one that we want.
For example, sup pose we want to display the value of p correct to only three
decimal places. How can we do it? Review the code that follows. You will find
that we can use cout to display data in any format as long as we add something
to the statement. Two new terms are added, a manipulator and a class.

Source Code

#include <iostream.h>
#include <iomanip.h>

void main(void)
 {
 int ninety = 90;
 double pi = 3.141592654;

 cout << "Using manipulators to control format ---------------------\n\n";
 cout <<"Ninety in decimal (default) is " << ninety << "\n";
 cout <<"Ninety in octal is " << oct << ninety << "\n";
 cout <<"Ninety in hexadecimal is " << hex << ninety <<"\n\n";

 cout << "Using parameterised manipulators to control format -------\n\n";
 cout << "1. PI=" << pi << endl;
 cout << "2. PI=" << setw(15) << pi << endl;
 cout << "3. PI=" << setprecision(3) << pi << endl;
 cout << "4. PI=" << setw(20) << setfill ('*') << pi << endl;

 cout << "5. PI=" <<setiosflags(ios::left) << setw(20) << pi << endl;
 cout << "6. PI=" <<setiosflags(ios::scientific | ios::showpos)<< pi << endl;
 cout << "7. PI=" <<setiosflags(ios::fixed) << setprecision(5) << pi << endl;

}

Displaying ninety without
manipulators.

We insert manipulators into the
output stream to change the display. endl creates a newline

This is similar to “\n”.

Parameterised manipulators with flags.

Flag.Class of flag.

We can have more than one
flag using the | operator.

The scope resolution operator (::) is used between the class and the flag.

To format output, we need iomanip.h.

Ch09IT.indd 6 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 7

#include <iostream.h>
#include <iomanip.h>

void main(void)
 {
 int ninety = 90;
 double pi = 3.141592654;

 cout << "Using manipulators to control format ---------------------\n\n";
 cout <<"Ninety in decimal (default) is " << ninety << "\n";
 cout <<"Ninety in octal is " << oct << ninety << "\n";
 cout <<"Ninety in hexadecimal is " << hex << ninety <<"\n\n";

 cout << "Using parameterised manipulators to control format -------\n\n";
 cout << "1. PI=" << pi << endl;
 cout << "2. PI=" << setw(15) << pi << endl;
 cout << "3. PI=" << setprecision(3) << pi << endl;
 cout << "4. PI=" << setw(20) << setfill ('*') << pi << endl;

 cout << "5. PI=" <<setiosflags(ios::left) << setw(20) << pi << endl;
 cout << "6. PI=" <<setiosflags(ios::scientific | ios::showpos)<< pi << endl;
 cout << "7. PI=" <<setiosflags(ios::fixed) << setprecision(5) << pi << endl;

}

Displaying ninety without
manipulators.

We insert manipulators into the
output stream to change the display. endl creates a newline

This is similar to “\n”.

Parameterised manipulators with flags.

Flag.Class of flag.

We can have more than one
flag using the | operator.

The scope resolution operator (::) is used between the class and the flag.

To format output, we need iomanip.h.

Output

Using manipulators to control format --------------------

Ninety in decimal (default) is 90
Ninety in octal is 132
Ninety in hexadecimal is 5a

Using parameterised manipulators to control format -------

1. PI=3.141593
2. PI= 3.141593
3. PI=3.142
4. PI=***************3.142
5. PI=3.142***************
6. PI=+3.142e+00
7. PI=+3.14159

Explanation

1.	 What	 is	 a	 stream	 manipulator?  A stream manipulator is a special type
of function/operator that can be used only with cout or cin and the <<
or >> operators. Stream manipulators may or may not have arguments.
Manipulators that take no arguments do not need parentheses.

Chapter 9 An Introduction to C++ 7

Ch09IT.indd 7 16/09/2011 11:20 AM

 8  C Programming: A Q & A Approach

2.	 How	 do	 we	 use	 stream	 manipulators?  We put them in a cin or cout
statement adjacent to the << or >> operators. For instance, to display the
decimal integer 90 in octal notation, we insert the manipulator oct into the
cout statement as shown below:

cout <<“Ninety in octal is ” << oct << ninety << “\n”;

 This statement uses the manipulator oct to convert the default format for the
integer argument ninety from decimal to octal.

 Other useful stream manipulators that do not require parameters to
specify their actions are

• dec, which sets the conversion format to decimal base
• hex, which sets the conversion format to hexadecimal base
• endl, which inserts a newline and flushes the stream

 For a complete list of manipulators that require no parameters, see the
manual of your C++ compiler.

3.	 How	 do	 we	 change	 the	 default	 field	 width	 set	 by	 cout?  We insert a
parameterised manipulator, setw(), into the output stream to change the
default field width. For example, the statement

cout << “2. PI=” << setw(15)<< pi << endl;

 uses the manipulator setw(15) to change the default field width to 15. The
parameter for setw() is of int type. The parameterised manipulators are
declared in the header file iomanip.h. Include this file in your program if
you want to use parameterised manipulators.

 Other useful stream parameterised manipulators are these:

Manipulator Action Example

setfill (int f) Set the fill character to f setfill (“*”)

setprecision(int p) Set the precision of a floating point
number to p

setprecision(3)

setw(int w) Set the field width to w setw(20)

setiosflags(long f) Set the format flag to f setiosflags(ios::left)

 In the following list of examples, left is considered to be a flag. Flags used in
this lesson are

Ch09IT.indd 8 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 9

Flag type Usage

left Left-adjust output

fixed Use fixed decimal point notation for a floating point number

scientific Use scientific notation for a floating point number

showpos Show + sign for a positive number

 To use a parameterised manipulator with more than one flag, you can
repeatedly use the manipulator with one flag at a time. You can also combine
the flags with the | operator. For example, the manipulator setiosflags(),
which follows,

cout << “6. PI=” <<setiosflags(ios::scientific |
ios::showpos)<< pi << endl;

 uses the | operator to combine the scientific and showpos flags.
 For a complete list of parameterised manipulators, see the manual of

your C++ compiler.

4.	 What	 is	 the	 notation	 ios::scientific?  C++ streams are defined in the
stream library and determined by their class and by customised insertion
and extraction operators. We discuss C++ classes in more detail later in
this chapter; for now, just remember that a C++ class consists of data and
functions that manipulate that data. A C++ class is similar to a C structure
except that it may contain both data and functions as its members. The
notation contains a C++ I/O stream class, ios. The format flag, such as
scientific, left or showpos, is an enumerator (meaning that it represents an
int value) specified in the class ios. To use these flags, we first write the class
name, ios, followed by the scoperesolutionoperator (::), and end with the flag
name. The operator indicates that the flag is the member of the class name
that precedes it.

Concept Recap

1. A stream manipulator is a special type of function/operator that is used in
input/output operations, for example, oct, dec, endl, etc. They normally
perform some additional operations on the data stream, for example,
number base conversion.

2. Parameterised manipulators can perform even more complicated functions
such as setting the print width of the output field.

Chapter 9 An Introduction to C++ 9

Ch09IT.indd 9 16/09/2011 11:20 AM

 10  C Programming: A Q & A Approach

3. The scope resolution operator (::) is used to address a particular value
or member of a class inside C++. The concept is similar to that of the
structure member operator. The details of C++ class will be elaborated
upon later.

Exercises

1. Use C++ manipulators with no parameters to rewrite the program from
Lesson 3.1.

2. Use C++ parameterised manipulators to rewrite the program from
Lesson 3.2.

3. For each data type, use C++ I/O streams to read the following data from the
keyboard (note: you need to use resetiosflags(long f) to clear the previous
flag specified by f. We have not covered resetiosflags(long f) in this text, so
you must experiment with it):

char ‘A’
int 123
long 987654
double 3.141592

char[20] Welcome to C++!

 Display the data on the screen as follows:

12345678901234567890123456789012345678901234567890
Char A A*********
Int 123 +123******
Long 987654 987654****
Double 3.141592 3.14e+00**

char[20] Welcome to C++! **********Welcome to C++!*****

Lesson 9.3 Function Overloading

Topic

• Overloaded functions

Suppose you want to write a function to add two numbers and another function
to concatenate (connect) one string to another. In C, you must give them two
different names, say add_num and add_string even though both combine two
variables into one. In C++, however, you can give them the same name, say
add. This means that you may “overload” two different functions and create
a common name for them. By doing so, you may generalise or standardise

Ch09IT.indd 10 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 11

functions that perform similar tasks. This will make your programs easier to
manage and to understand. You may overload as many functions as you like.
Function overloading is a useful feature of C++. In the program that follows,
observe how functions are overloaded.

Source Code

#include <iostream.h>
int add (int a, int b);
double add (int a, float b, double c);
char* add (char *a, char *b);

void main()
{
 cout << "1a. add(44 , 55) =" << add(44 , 55) << endl;
 cout << "1b. add(1.2, 3.4) =" << add(1.2, 3.4) << endl <<endl;

 cout << "2. add(1, 2.3, 3 .4E+1) = " << add(1, 2.3, 3.4E+1) << endl <<endl;

 cout << "3. add(""Good "",""Day!"") =" << add("Good ", "Day!");
 }

int add(int a, int b)
{
 return (a+b);
}

double add(int a, float b, double c)
{
 return (double)(a+b+c);
}

#include <string.h>
char *add(char *a, char *b)
{
 char ab[200];
 strcpy(ab,a);
 strcat(ab,b);
 return(a,b);
}

These three functions all have the same
name. They return an int, double and char*.

Three arguments.

Calling add with two numeric arguments.

Calling add with three
numeric arguments.Calling add with two char* arguments.

There are three different
definitions for add.
This makes add an
overloaded function.

Two arguments.

Two arguments.

Output

1a. add(44, 55) =99
1b. add(1.2, 3.4) =4

2. add(1, 2.3, 3.4E+1) = 37.3

3. add(“Good”, “Day!”) =Good Day!

Ch09IT.indd 11 16/09/2011 11:20 AM

 12  C Programming: A Q & A Approach

Explanation

1.	 What	 is	 function	 overloading?  Function overloading is a C++ program-
ming technique of supplying more than one definition for a given function
name. This C++ feature allows you to develop functions that perform
similar tasks, using the same name. The C++ compiler is left to decide
which function should be used. For example, in this program, we have
three functions, the first adds two int numbers; the second adds an int,
a float and a double; and the third concatenates two strings. All three
functions have the same name, add. Therefore, the add function is over-
loaded (see Fig. 9.3).

2.	 How	 do	 we	 call	 an	 overloaded	 function?  To call an overloaded function,
we first determine which of the overloaded functions we need. Then we
place the appropriate number and types of arguments in the function call.
For example, if we want to add two numbers, then we place two numeric
arguments, such as

add(44, 55)

or

add(1.2, 3.4)

 to make the function call. If we want to concatenate two strings, then we
place two string arguments, such as

add(“Good ”, “Day!”)

 to make the function call. The number and types of arguments we place
must match the arguments in one of the function definitions. If none of them
matches or there is more than one match, we will receive an error message
from the compiler.

3.	 What	 is	 the	 main	 restriction	 on	 writing	 overloaded	 functions?  Not all
func tions can be overloaded. There are a number of rules and restrictions
on developing overloaded functions. The main restriction you need to
know at this point is that the function to be overloaded must have different
argument lists, that is, the number or type of any two functions in the
set must be different. Without this restriction, the C++ compiler will not
be able to distinguish which function should be chosen to perform the
work. For example, the prototypes of the overloaded functions in this
lesson are

int add (int a, int b);
double add (int a, float b, double c);
char *add (char *a, char *b);

Ch09IT.indd 12 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 13

 Obviously, there is no ambiguity in the arguments between any two functions
in the set. However, if we change the prototype of the second function to

double add (float b, double c);

 then there is an ambiguity in the arguments between the first and the second
func tions, even though they have different return values and different
argument types. For example, if you use the statement

cout << add(1.2, 3.4);

 then the C++ compiler might convert the floating number arguments to int
and make a function call as

cout << add(1, 3);

 At this point, the C++ compiler cannot select which function to use to add the
two numbers and hence generates an error message. In general, when you
develop a set of overloaded functions, make sure that there is no ambiguity
in the arguments for different functions.

Concept Recap

1. Function overloading allows you to develop a set of functions that perform
similar tasks, using the same name. Hence, the number and types of arguments
in the function call must be exactly the same as that function that you want
to call.

Exercises

1.	 Use overloaded functions to write a program that can find
a. The maximum of three numbers.
b. The longest and last alphabetical word in a character string.

Fig. 9.3  An overloaded function

Same number
of arguments,
but different
types of
arguments.

Different numbers
of arguments.

Different numbers
of arguments.

add (int a,

add (int a,

add (char *a,

int b

float b,

char *b

);

double c);

);

Chapter 9 An Introduction to C++ 13

Ch09IT.indd 13 16/09/2011 11:20 AM

 14  C Programming: A Q & A Approach

 Use the following data as your input:

1 23 4.56
Have a nice day !
100 3.14 999.9

 The program should show the following output:

The maximum of 1, 23 and 4.56 is 23
The longest and last alphabetical word in “Have a nice day
!” is “nice”

The maximum of 100, 3.14 and 999.9 is 999.9

2.	 Use overloaded functions to write a program that can sort

a. The elements of an int array of four in ascending order.
b. The elements of a float array of five in descending order.

 Use the following data as your input:

33 22 11 55
8.8 6.6 9.9 7.7 5.5

 The program should show the following output:

11 22 33 55
9.9 8.8 7.7 6.6 5.5

Lesson 9.4 Default Function Arguments

Topic

• Functions with default arguments

At times you may need to call a function with the same arguments repeatedly
in your program. In doing so, by mistake, you may enter a wrong argument.
To avoid this error, C++ provides a solution that allows you to call the function
without using any arguments. The prototype of the function in the program
for this lesson has three arguments, but you may call them with three, two, one
or even no argu ments at all. Review the program and find out how to call a
function without the required arguments.

Ch09IT.indd 14 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 15

Source Code

#include <iostream.h>
double add (int aa=10, double bb=20.0, char *cc=" aa plus bb");
int subtract (int xx, int yy=11, int zz=22);

// Wrong --- int subtract(int xx=11, int yy, int zz);

void main(void)
{

 cout << "1. add() = " << add();
 cout << "2. add(30) = " << add(30);
 cout << "3. add(40, 50) = " << add(40, 50);
 cout << "4. add(60, 70.0," "Result"")= " << add(60, 70.0,"Result")<<endl;

 cout << "5. subtract(77) = " << subtract(77);
 cout << "6. subtract(99, 44) = " << subtract(99, 44) ;
}

double add(int a, double b, char *c)
{
 cout << endl << endl;
 cout << "aa = " << a << ", ";
 cout << "bb = " << b << ", ";
 cout << "cc = " << c << endl;

 return (a+b);
}

int subtract(int x, int y, int z)
{
 cout << "\n\n";
 cout << "xx = " << x << ", ";
 cout << "yy = " << y << ", ";
 cout << "zz = " << z << endl;

 return (x-y-z);
}

Function add has three default arguments.

Function subtract has two default arguments out of three arguments.

Calling a function with fewer than the number of
arguments in the prototype causes the values of
the leftmost argument(s) to be passed. The
default values are used for the other arguments.

Function add returns a numeric
sum of the first two arguments.

Function subtract subtracts three integers.

Output

aa = 10, bb = 20, cc = aa plus bb
1. add() = 30

aa = 30, bb = 20, cc = aa plus bb
2. add(30) = 50

aa = 40, bb = 50, cc = aa plus bb
3. add(40, 50) = 90

aa = 60, bb = 70, cc = Result
4. add(60, 70.0,Result)= 130

xx = 77, yy = 11, zz = 22
5. subtract(77) = 44

xx = 99, yy = 44, zz = 22
6. subtract(99, 44) = 33

Ch09IT.indd 15 16/09/2011 11:20 AM

 16  C Programming: A Q & A Approach

aa = 10, bb = 20, cc = aa plus bb
1. add() = 30

aa = 30, bb = 20, cc = aa plus bb
2. add(30) = 50

aa = 40, bb = 50, cc = aa plus bb
3. add(40, 50) = 90

aa = 60, bb = 70, cc = Result
4. add(60, 70.0,Result)= 130

xx = 77, yy = 11, zz = 22
5. subtract(77) = 44

xx = 99, yy = 44, zz = 22
6. subtract(99, 44) = 33

Explanation

1.	 How	do	we	call	a	 function	without	 the	 required	argument(s)?  To call a
function without the required argument(s), we need to write a function that
has default argument value(s). A defaultargument is initialised with a default
value in the prototype of the function. For example, the prototype of the
function

double add (int aa=10, double bb=20.0, char *cc=” aa
plus bb”);

 has three formal arguments: aa, bb and cc. Each argument is initialised
with a default argument value. The C++ compiler uses the default values
if the actual argu ment values are not provided when the function is called.
However, the default value is overridden if the actual argument value is
provided in the call.

 The preceding function has three default argument values; therefore,
we may call it with no arguments or with one, two or three arguments. Note
that if a function has more than one default argument, when we call the
function, we cannot arbitrarily input some actual arguments as non default
argument values and assume the compiler will assign default argument
values for the remaining arguments. The rule is that, if we want to replace
a default argument value with a user-defined value, then we must replace
all other default values on its left with user-defined values. For example,
in the function add, if we want to override the second default value (for
argument bb), then we must use non-default values for the first and second
arguments and use the default value for the third argument. The following
table shows the default values used when we call the function add with
different numbers of arguments:

Function call Default arguments

add() aa, bb, cc

add(30) bb, cc

add(40, 50) cc

add(60, 70.0,”Result”) None

 16  C Programming: A Q & A Approach

Ch09IT.indd 16 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 17

2.	 Do	we	need	to	initialise	default	values	for	all	formal	arguments?  No, we
may select some arguments as default arguments and the rest as normal
arguments. However, this cannot be done randomly. The rule is that if we
want to use the nth argument as a default argument, then all arguments
after the nth argument must also be default arguments. For example, in
the function subtract, we selected the second argument, yy, as a default
argument, then the third was also required to be a default argument (see
Fig. 9.4). If we had defined the function subtract as

int subtract(int xx=11, int yy, int zz);

 then the C++ compiler would have generated an error message on
compilation because the first argument is a default argument but the second
and the third are non-default arguments.

Fig. 9.4  Default function arguments

Correct code int subtract (int xx, int yy=11, int zz=22);

correct direction of setting default arguments

Incorrect code int subtract (int xx=11, int yy, int zz);

incorrect direction of setting default arguments

Non-default argument
Default argument

Concept Recap

1. In a C++ function, a defaultargument is initialised with a default value in the
prototype of the function. For example,

double add (int aa=10, double bb=20.0, char *cc=” aa

plus bb”);

Chapter 9 An Introduction to C++ 17

Ch09IT.indd 17 16/09/2011 11:20 AM

 18  C Programming: A Q & A Approach

Exercises

1. Use default arguments to write a program that

 a. Creates the following default output:

	 ABCD CORPORATION
 Project ________ Contract No. 3815-A File No. ________
 Designed: JKR Checked __________ Date _____/2011

 b. Gets input from the user on Project, File No., Checked and Date data.
 c. Generates a non-default output as follows:

	 ABCD	CORPORATION
	 Project	USA-OIL-1		Contract	No.	3815-A			File	No.	OIL-A12345
	 Designed:	JKR									Checked	John	&	Ken			Date	12/13/2011

2.	 Use default arguments to write a program that

a. Gets an input data filename from the user. If the user only presses the
Return key, then the default name of “INPUT.DAT” is used.

b. Reads the data in the file. The file always has four columns of data repre-
senting the point number, X, Y and Z coordinates. The number of rows
may vary. Input the following data:

	 No. X Y Z
 1 755.0 221.9 696.4
 2 744.4 204.3 698.6
 3 743.1 206.8 689.9
 4 734.8 225.4 701.3

c. Asks the user to input two point numbers. For example, if the user
enters 34, then calculate the distance between points 3 and 4. However,
if the user only presses the Return key, calculate the distances between
points 1 and 2, 2 and 3, 3 and 4 and 4 and 1.

d. Generates a neat screen output.

Lesson 9.5 Inline Functions and Position of
Variable Declarations

Topics

• Inline functions
• Position of variable declarations

Ch09IT.indd 18 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 19

This lesson examines two enhancements of C++ to the C language. One is
the use of inline functions versus macros and the other is the flexibility of
placing variable declarations. Look at the inline function and the macro in
the program that follows. Can you guess the advantages and disadvantages
inline functions may have over function-like macros? Can you find instances
in the program where variables are declared other than at the beginning of
the code?

Source Code

#include <iostream.h>
#define MACRO(x,y) (x*x + y*y)

inline int inl_func (int a, int b) {return (a*a + b*b);}

void main(void)
{
 int x=10, y=5, nn;
 for (nn=0; nn<2; nn++)
 {
 cout << "\n\nMACRO(x++, --y) = " << MACRO(x++, --y);
 cout << "\nAfter MACRO, x = " << x << ", y = " << y ;
 }

 int a=10, b=5;
 for (int mm=0; mm<2; mm++)
 {
 cout << "\n\ninl_func(a++, --b) = " << inl_func(a++, --b);
 cout << "\nAfter inl_func(), a = " << a << ", b = " << b;
 }
}

Inline function that performs the same
task as the function-like macro.

Using the macro with side effects.

Declarations.

Using the inline function. No side effects occur in the function.

Function-like macro.

Output

MACRO(x++, --y) = 122
After MACRO, x = 12, y = 3

MACRO(x++, --y) = 158
After MACRO, x = 14, y = 1

inl_func(a++, --b) = 116
After inl_func(), a = 11, b = 4

inl_func(a++, --b) = 130
After inl_func(), a = 12, b = 3

Ch09IT.indd 19 16/09/2011 11:20 AM

 20  C Programming: A Q & A Approach

Explanation

1.	 What	 is	an	 inline	 function?  An inline function is like a regular function
except that it uses the keyword inline as the function qualifier, meaning that
the first word in the function prototype is inline and the definition of the
function is followed directly by its function body (see Fig. 9.5). For example,
the statement

inline int inl_func (int a, int b) {return (a*a + b*b);}

 declares that inl_func is an inline function; it is of int type, has two arguments,
a and b, and returns the value of (a*a + b*b) to the calling function.

Fig. 9.5  An Inline function

keyword
inline

function
name

function body
(keep as short as possible)

function
type

function
arguments

inline int int_func (int a, int b) {return (a*a+b*b);}

2.	 What	 effects	 will	 inline	 functions	 and	 macros	 have	 on	 your	 program? 
For inline functions, the inline keyword causes the C++ compiler to insert
a complete copy of the function at each place it is called. This eliminates
loading function arguments each time it is called. Therefore, programs
using inline functions run faster than those using ordinary functions for
the same purpose. However, if an inline function is called many times,
the multiple copies of the function will make a program larger. In general,
an inline function is used only when it is short and called in only a
few places.

 Macros are similar to inline functions. The symbolic name declared with
the #define directive is replaced with the text each time the macro name
appears in a program. Similar to an inline function, a macro adds more code
to a program and also makes a program run faster.

 Inline functions are recognised by C++ compilers. The compiler type
checks the function argument and its return type. Macros, on the other
hand, are processed by preprocessor. The preprocessor simply replaces

Ch09IT.indd 20 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 21

the macro name with its replacement text and no type checking is
performed.

 Inline functions are easier to write than macros. You may use default
arguments in inline functions but not in macros. In addition, inline functions
behave like ordi nary functions, without the side effects of macros. For
example, with the initial input values of x = 10 and y = 5, the result of
invoking

MACRO(x++, ––y)

 is 122, which is the value of (10 * 11 + 4 3 3 = 122). Each time MACRO is
called, the value of x is incremented once (from 10 to 11) and the value of y is
decremented twice (from 5 to 3). After the call, the value of x is incremented
once more (from 11 to 12).

 However, with the initial input values of a = 10 and b = 5, the result of
calling

inl_func(a++,	––b)

 is 116, which is the value of (10 3 10 + 4 3 4 = 116). Each time inl_func() is
called, the value of a is not changed (10), and the value of b is decremented
once (from 5 to 4). After the call, the value of a is incremented once (from
10 to 11). With multiple calls of MACRO and inl_func(), the differences
produced by the side effects can be very large.

3.	 Can	we	declare	variables	at	any	location	in	the	program?  Yes, as long as
the locations are meaningful and we place the declarations before we use the
variables. We may place declarations at the beginning of our code, such as
these declarations of variables x and y:

int x=10, y=5, nn;

 Or we may put them somewhere in the code, such as these declarations of
variables a and b:

int a=10, b=5;

 yet another way is to place them within the block of the code, such as this
declaration of variable mm inside the for loop,

for (int mm=0; mm<2; mm++)

 Placing variable declarations before they are used may make our
programs more readable. However, if we randomly place the declarations
all over our code, the flex ibility we gain from C++ may cause us and
others who read our programs difficulties in finding where the variables
are declared.

Ch09IT.indd 21 16/09/2011 11:20 AM

 22  C Programming: A Q & A Approach

Concept Recap

1. In inline functions, a complete copy of the function is inserted at each place
it is called. Thus, inline functions run faster than ordinary ones.

2. C++ allows variables to be declared anywhere before they are used.

Exercises

1.	 Write a program to read the following data

Radius at the bottom of a cone Height of cone

10.1 66.6

20.2 55.5

30.3 44.4

 Next, use an inline function and a macro to calculate the volume of each
cone and display the output on the screen.

2. Use the data in Exercise 1 and calculate the surface area of each cone
(including the bottom area). You are required to use a master inline function
and a master Macro to perform the calculation. The master macro may
invoke as many other macros as you need.

Lesson 9.6 C++ Classes and Objects With Data
Members Only

Topics

• C++ classes
• Object-oriented programming

What we have covered up to this point are simply enhancements to the C
language, not really the essence of C++. Beginning with this lesson, we deal with
the core of the C++ language, classes and objects. Once you understand what
classes and objects are, you will begin to appreciate their value.

This lesson’s program assigns values to members of a structure and a
class. It outputs the values of the members of the structure and class to the
 screen.

Ch09IT.indd 22 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 23

Source Code

#include <iostream.h>
#include <string.h>

struct Bus
{
 char colour[10];
 float price;
};

class Car
{
 public:
 char colour[10];
 private:
 float price;
};

void main(void)
{

 Bus newbus, oldbus;

 strcpy(newbus.colour, "Red");
 cout << "newbus.colour = " << newbus.colour << endl;
 newbus.price = 1234.5;
 cout << "newbus.price = " << newbus.price << "\n\n";

 Car newcar, oldcar;

 strcpy(newcar.colour, "Blue");
 cout << "newcar.colour = " << newcar.colour << endl;

 //newcar.price = 1234.5;
 //cout << "newcar.price = " << newcar.price << "\n\n";
}

We can designate members of classes as
either public or private. Members with the
private designation cannot be accessed
by a function outside of the class.

Definition of class Car.

Definition of struct Bus.

Initialising and printing
members of variables of
type struct Bus.

Declaring newcar and oldcar to be objects of class Car.

We cannot access
newcar.price from main
because it is a private
member.

Output

newbus.colour = Red
newbus.price = 1234.5

newcar.colour = Blue

Ch09IT.indd 23 16/09/2011 11:20 AM

 24  C Programming: A Q & A Approach

Explanation

1.	 What	are	classes	and	objects?  Classes in C++ are user-defined data types
similar to the C user-defined data types, structures. But classes are more
powerful than struc tures. Structures in C can contain data members only
whereas classes in C++ may contain both data and function members. The
function members manipulate the data mem bers. In this lesson, we discuss
classes with data members only.

 An instance of a class is called an object. An object is an entity that
contains both data and functions. When we use classes and objects in our
programs, our programs are object oriented; we are writing object-oriented
programs.

2.	 How	 do	 we	 define	 classes	 and	 declare	 objects	 in	 a	 program?  Defining
a class in C++ is very similar to defining a structure in C. Compare these
two:

struct Bus
{
 char colour[10];
 float price;
};

class Car
{
 public:
 char colour[10];
 private:
 float price;
};

 The primary differences between them are the keywords public and
private. Both contain the data member colour[10] of type char and price
of type float. Once we have defined the Bus structure, we can declare
variables belonging to that structure. Similarly, once we have defined the
Car class, we can declare objects belonging to that class. For example, the
statements

Bus newbus, oldbus;
Car newcar, oldcar;

 declare the variables newbus and oldbus to belong to the Bus structure, and
the objects newcar and oldcar as belonging to the Car class.

 The Bus structure has two data members. Therefore, any variable
belonging to this type also has two data members. Similarly, the Car class
has two data members. Therefore, any object belonging to this class also has

Ch09IT.indd 24 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 25

two data members. With proper treatment, any data member in a structure
or class can be handled like any similar data type in C++.

 Data members in classes are sorted into two groups (see Fig. 9.6):
public and private (another group, named protected, will not be discussed
here). The private or public labels in the class definition specify the
availability of each data member in the class. You may have as many data
members as you need in a class. Any data member declaration that appears
after a speci fied label belongs to the specified group. You may place the
public and private labels in any order or use as many as you need, but
we recommend that you arrange them into two groups. Typically, we
use the private label for data members and the public label for function
members (not shown in this program). Public data members have higher
availability than the private ones, meaning that there are more ways and
fewer restrictions to access public data members than private ones (see
explanation 3 below).

 In C++, you may also define a class with the keyword struct or union.
This means that C++ structures and unions offer more flexibility than
their C counterparts because they may contain both data and functions as
members. The main difference between class, struct and union, as shown in
the following table, is the accessibility of their mem bers.

Fig. 9.6  A C++ class definition

A pair of braces is
used to enclose
all class members

keyword class
Car

public:
char colour[10];
.....
private:
float price;
.....

label to indicate level of
accessibility to class members

colon

public data member(s)

private data member(s)

end of class definition

class name
class

{

};

Ch09IT.indd 25 16/09/2011 11:20 AM

 26  C Programming: A Q & A Approach

Class type Member accessibility by default Modification of accessibility

class Private Can be changed by user

struct Public Can be changed by user

union Public Cannot be changed by user

 Note that a class can be defined within or outside a function. The class
is local if it is defined within the function; otherwise, it is global. The Bus
structure and Car class in this program are global.

 The default accessibility for a class is private. If no accessibility is
specified for any members, C++ makes the accessibility private.

3.	 How	do	we	access	public	data	members	of	a	class	object?  We access public
data members of a class object in the same way as we did data members
of a structure variable. For example, to access the data members, colour
and price, of structure variable newbus, we first use the statements

strcpy(newbus.colour, “Red”);
newbus.price = 1234.5;

 to initialise them. After that, the data members can be manipulated like any
other regu lar data. The same approach can be used to access public class
data members. For example, we may use the statements

strcpy(newcar.colour, “Blue”);
cout << “newcar.colour = “ << newcar.colour << endl;

 to initialise and then display the public data member, colour of object
newcar, on the screen. This example shows that public data members can
be accessed by any func tion (user-defined or standard library function) in
the program.

4.	 How	do	we	access	private	data	members?  The data member, price, in class
Car is private. A private data member cannot be accessed by a function
outside of the class. For example, the statements

//newcar.price = 1234.5;
//cout << “newcar.price = “ << newcar.price << “\n\n”;

 are invalid because newcar.price is private. It cannot be initialised by an
assignment statement and cannot be displayed by cout in the function main
because main is not a member of the Car class. Private data members can be
accessed only by member functions belonging to the same class. We discuss
how to create member functions in the next lesson.

Ch09IT.indd 26 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 27

Concept Recap

1. Classes in C++ contain both data and function members.
2. An instance of a class is called an object.
3. We use the member operator to access public data members of a class object.

We use a dot operator to connect the object and its member function:

Object.member

4. A private data member cannot be accessed by a function outside of the class.

Exercises

1. In a lab class, you are asked to measure oxygen consumption. You will
measure the change in gas volume during respiration in respirometers
containing either soaked or dry peas at a given temperature. The following
table shows the results of the measurements:

Temperature
(C)

Time x
(min)

Dry peas
(reading at time x)

Soaked peas
(reading at time x)

23 Initial, 0 0.89 0.65

23 0–5 0.86 0.39

23 0–10 0.85 0.18

23 0–15 0.84 0.02

23 0–20 0.83 0.00

Write a program to display the measurements. The program shall

a. Read the following original measurement data file,

Temp Time Dry peas Soaked peas

23 0 0.89 0.65

23 5 0.86 0.39

23 10 0.85 0.18

23 15 0.84 0.02

23 20 0.83 0.00

 using a structure that contains the following data members:

 int temp;
 int time[10];

Ch09IT.indd 27 16/09/2011 11:20 AM

 28  C Programming: A Q & A Approach

 double dry[10];
 double soaked[10];

b. Repeat step a but use a class instead of a structure.

2.	 Light can be used to measure the change of contamination content in a lake.
For example, light may reach a depth of only a few feet in a very muddy lake
but a greater depth in a clearer one. The following table shows the percent of
incident light at two different lakes:

Incident light (%) Depth in Lake1 (ft) Depth in Lake2 (ft)

100 0.0 0.0

65 1.5 2.4

25 2.3 12.0

10 7.4 25.3

2 12.0 30.2

 Write a program to

 a. Read the data using a class.
 b. Convert the unit of depth from feet to metres.
 c. Determine which lake is clearer.
 d. Display the information in steps (b) and (c) on the screen.

Lesson 9.7 Classes with Data and Function
Members, Encapsulation

Topics

• Member functions
• Encapsulation

The class we discussed in the previous lesson contained only data members.
This type of class is similar to a C structure when its data members are public.
To manipu late data in a traditional C structure (e.g. displaying the data on
the screen), it is necessary to use a function. The data and the function for
manipulating the data are different entities and not connected explicitly. In other
words, we may use any function to handle the data or use the function to handle
any data.

Ch09IT.indd 28 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 29

In C++, however, data members and function members are linked together
and placed under a class object. Linking the data and the functions that
manipulate the data into a single object is called encapsulation. Because classes
link functions and data, we work with classes in a manner different from the
way that we work with structures. This lesson illustrates how we call functions
that are linked with data through classes and objects. It creates three objects:
newcar, oldcar and mycar. The objects are declared to be of class Car. We assign
values to the data members and print. We call the function members to assign
values to some of the data members.

Source Code

#include <iostream.h>
#include <string .h>

class Car
{
 char owner[11];

 public:
 char colour[10];
 int year_made;
 void get_info(char *who, int year, double cost);
 void display(void);

 private:
 double price;
 double sellcar (double sell_price);
};

void main(void)
{
 Car newcar, oldcar, mycar;

 strcpy (newcar.colour, "Blue");
 cout << "newcar.colour = " << newcar.colour << endl;
 newcar.get_info("Mary", 1998, 6543.2);
 newcar.display();

 strcpy (oldcar.colour, "White");
 cout << "oldcar.colour = " << oldcar.colour << endl;
 oldcar.get_info("John", 1921, 1234.5);
 oldcar.display();

 oldcar.year_made=1934;
 mycar=oldcar;
 cout << "mycar.colour = " << mycar.colour << endl;
 mycar.display();
}

void Car::get_info(char *who, int year, double cost)
{
 strcpy(owner, who);
 year_made = year;
 price = cost;
}

double Car::sellcar(double sell_price)
{
 if (sell_price < 5000) return (sell_price + 265.5);
 else
 return (sell_price + 456.8);
}
void Car::display(void)
{
 cout << "owner = " << owner << endl;
 cout << "year_made = " << year_made << endl ;
 cout << "price = " << price << endl;

 cout << "sellcar(price) = " << sellcar(price) << "\n\n";
}

Because this is neither a public nor a private function
it is given the default specification (private).

Public members
of class Car. Public functions can be called

from any function.

Private members of class Car.
These can be accessed only
from the member functions
get_info and display.

Declaring the objects newcar,
oldcar and mycar of class Car.

In main, we can access only
the public data members
colour and year_made.

We can also access the public functions get_info and
display. To do so though, we must associate the call
with a declared object. In this case, the object is oldcar.

We can copy one object into another
using a single assignment statement.

Because sellcar is a private member
function, we can call it only from other
member functions. Here, we call it
from Car :: display.

Within a member function, we need not associate function calls or members with a specific
object. This is because in calling the function we have already indicated an object. Notice the
call oldcar.display() in main, which already indicates the object oldcar on calling the function.

In the function header, we must indicate that get_info,
sellcar and display are member functions of the Car class.
The reason for this is that in C++ we are allowed to have
functions with the same name but of different classes.

Ch09IT.indd 29 16/09/2011 11:20 AM

 30  C Programming: A Q & A Approach

#include <iostream.h>
#include <string .h>

class Car
{
 char owner[11];

 public:
 char colour[10];
 int year_made;
 void get_info(char *who, int year, double cost);
 void display(void);

 private:
 double price;
 double sellcar (double sell_price);
};

void main(void)
{
 Car newcar, oldcar, mycar;

 strcpy (newcar.colour, "Blue");
 cout << "newcar.colour = " << newcar.colour << endl;
 newcar.get_info("Mary", 1998, 6543.2);
 newcar.display();

 strcpy (oldcar.colour, "White");
 cout << "oldcar.colour = " << oldcar.colour << endl;
 oldcar.get_info("John", 1921, 1234.5);
 oldcar.display();

 oldcar.year_made=1934;
 mycar=oldcar;
 cout << "mycar.colour = " << mycar.colour << endl;
 mycar.display();
}

void Car::get_info(char *who, int year, double cost)
{
 strcpy(owner, who);
 year_made = year;
 price = cost;
}

double Car::sellcar(double sell_price)
{
 if (sell_price < 5000) return (sell_price + 265.5);
 else
 return (sell_price + 456.8);
}
void Car::display(void)
{
 cout << "owner = " << owner << endl;
 cout << "year_made = " << year_made << endl ;
 cout << "price = " << price << endl;

 cout << "sellcar(price) = " << sellcar(price) << "\n\n";
}

Because this is neither a public nor a private function
it is given the default specification (private).

Public members
of class Car. Public functions can be called

from any function.

Private members of class Car.
These can be accessed only
from the member functions
get_info and display.

Declaring the objects newcar,
oldcar and mycar of class Car.

In main, we can access only
the public data members
colour and year_made.

We can also access the public functions get_info and
display. To do so though, we must associate the call
with a declared object. In this case, the object is oldcar.

We can copy one object into another
using a single assignment statement.

Because sellcar is a private member
function, we can call it only from other
member functions. Here, we call it
from Car :: display.

Within a member function, we need not associate function calls or members with a specific
object. This is because in calling the function we have already indicated an object. Notice the
call oldcar.display() in main, which already indicates the object oldcar on calling the function.

In the function header, we must indicate that get_info,
sellcar and display are member functions of the Car class.
The reason for this is that in C++ we are allowed to have
functions with the same name but of different classes.

Output

newcar.colour = Blue
owner = Mary
year_made = 1998
price = 6543.2
sellcar(price) = 7000

oldcar.colour = White
owner = John
year_made = 1921
price = 1234.5
sellcar(price) = 1500

mycar.colour = White
owner = John
year_made = 1934
price = 1234.5
sellcar(price) = 1500

Explanation

1.	 What	 are	 class	 member	 functions?  Class member functions are import-
ant components of C++ classes. Member functions are defined within
the definition of the class to which they belong. For example, the class
definition

 30  C Programming: A Q & A Approach

Ch09IT.indd 30 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 31

class Car
{
 char owner[++];

 public:
 char colour[10];
 int year_made;
 void get_info(char *who, int year, double cost);
 void display(void);

 private:
 double price;
 double sellcar (double sell_price);
};

 defines three member functions, get_info(), display and sellcar();. The
prototype of a class member function is the same as the prototype of any
other C or C++ regular function. A member function can have any number
and any valid types of formal arguments and can return any types of data
to its calling function. For example, the get_info() member function is of
void type and has three formal arguments: who, year and cost. The sellcar()
member function is of double type and contains only one formal argument,
sell_price. The display() function is of void type and contains no arguments.

 Similar to class data members, class member functions are classified
as either private or public. For example, the get_info() and the display()
functions are public but the sell_car() function is private.

2.	 How	 do	 we	 call	 public	 member	 functions	 and	 private	 member	
functions?  Like any other ordinary function, a public member function can
be called from any place in the program. To call a public member function,
we need to provide not only the function name but also the object to which
it belongs. For example, the state ments

newcar.get_info(“Mary”, 1998, 6543.2);
oldcar.get_info(“John”, 1921, 1234.5);

 call the member function get_info with different actual arguments. The
first call is for the object newcar and the second call is for the object oldcar.
Both objects belong to the same class, Car. Note that we use a dot operator
to connect the object and its member function (if we call the member
function through a pointer to the object, we use the -> instead of the dot
operator. After the call, the actual arguments are passed to the object. For
example, after the first call, the information Mary, 1998 and 6543.2 are
assigned to the data members newcar.owner, newcar.year_made and
newcar.price, respectively. These assignments are made because, in the
body of the function, get_info, the variables owner[], year_made and price,

Ch09IT.indd 31 16/09/2011 11:20 AM

 32  C Programming: A Q & A Approach

are used. Note that within function get_info, no declarations for the vari-
ables owner, year_made or price have been made. This is because they are
members of the Car class. The display() function then displays the object
information on the screen after being called with newcar.display() and
oldcar.display().

 Unlike a public member function, a private member function can be
called only by other member functions within the same class. For example,
the sellcar() member function is private, we cannot call it from the main()
function. Instead, we call it from the display() member function, which also
belongs to the class Car. Because display() is already associated with an
object when it is called, within display() it is not correct to call sellcar() with
an object, such as oldcar.sellcar().

3.	 How	do	we	access	private	data	members?  The data member price in the
class Car is private. Any private data member can be accessed only by
member functions belonging to the same class. For example, the class Car’s
member function get_info() uses the statement

price = cost;

 to assign the value of cost to the private data member price. Another member
function, display(), then uses the statement

cout << “price = ” << price << endl;

 to display price on the screen.
 Note that in calling the get_info member function, an object is already

associated with the member. Therefore, it is not correct to use the object’s
name with the data member, such as oldcar.price, within the function.

4.	 How	do	we	develop	a	member	 function?  The procedure for developing
a member function is similar to that for developing any other function. We
must declare (write the function prototype) and define (write the function
body) of the function. For example, the statements

prototype -- void get_info(char *who, int year, double cost);
definition--- void Car::get_info(char *who, int year, double cost)
{ ...
 ...function body
}

 show how the get_info member function is declared and defined. Note that,
in the function definition, the scope resolution operator (::) is used. This
operator indicates that the function behind the symbol belongs to the class
in front of the symbol. This means we can declare another member function
as get_info() within the same program, as long as the second get_info() does
not belong to the class Car.

Ch09IT.indd 32 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 33

5.	 What	is	encapsulation?  The process of linking data and the functions that
manipulate the data into a single object is called encapsulation. Encapsulation
provides an efficient way of allowing and restricting access to data. This is a
feature that C lacks. In C, data and functions are not encapsulated, they are
separate entities.

 When the function display is called as oldcar.display, all of the oldcar
data are automatically made accessible to the function display, even though
no data are explicitly transferred (copied) through the argument list. You
can see that this is true because the function clearly has no arguments. Note
that the values of oldcar.owner, oldcar.year_made and oldcar.price have
been accessed by the function. This is pos sible because of encapsulation (see
Fig. 9.7).

6.	 What	 is	 the	 effect	 of	 encapsulation	 on	 the	 availability	 of	 data	 to	
functions?  In C, we saw that the only way to transfer information to a
function is through the parameter list or the use of global variables. (We

Fig. 9.7  An image of memory that illustrates the concept of objects 
and encapsulation. The data members of each object are separate and 
unique. However, the function members (i.e. the instructions stored in 
memory) are shared among the objects in a class. The data members 
are linked with the function members in an object.

Image of
memory

Objects created
by encapsulation

function members
of class Car

oldcar
data
members

newcar
data
members

mycar
data
members

Ch09IT.indd 33 16/09/2011 11:20 AM

 34  C Programming: A Q & A Approach

discourage the use of global variables unless they are absolutely necessary
because they make a program less modular.) Because C++ uses encapsulation,
a member function automatically has access to the data members of an
object when it is called with that object’s name. It is not necessary to pass
data members to a member function through the parameter list. However,
because data members are not global variables, we maintain a type of
modularity to the program design. This is a concept of object-oriented
programming that is lacking in C. It is illustrated in Fig. 9.8.

Fig. 9.8  Function members of an object have direct accessibility to the 
data members of the object, as well as to global variables (as indicated 
by the dashed ellipse). However, local variables in non-member functions 
must be passed through an argument list.

These variables must
be passed through the
function call argument list.

global
variables

local variables
in non-member
functions

function members
of an object

data
members
of an object

7.	 In	 general,	 how	 can	 we	 access	 both	 public	 and	 private	 data	 members	
from	 non-member	 functions?  From a non-member function we must
use an object’s name to access any member. This is illustrated in Fig. 9.9.
We can access public data members directly by using the object’s name as
we did from main (which is a non-member func tion) in this lesson’s pro-
gram using oldcar.colour and oldcar.year_made. We can also call public
function members using the object’s name as we have done in main, using
oldcar.get_info() and oldcar.display().

Ch09IT.indd 34 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 35

 However, from a non-member function, we cannot access directly any
private member (which is neither a data nor function). Instead, we must first
call a public member func tion and have it call a private member function
or access private data members. In this lesson’s program, from main we
first call the public member function display with oldcar.display, which

Fig. 9.9  Accessing both private and public data members from non-
member functions. Notice that it is necessary to call a public member 
function from a non-member function to access private data members. 
Public data members can be accessed directly from non-member 
functions. In all cases, the object’s name must be used in the non-
member function to access the public member functions or public data 
members. Compare this figure to Fig. 9.10.

Declare
object here.
Call public
member
functions
using the
object’s name.
Public data
members
can be
accessed
from this
function
using the
object’s name.

From this
function,
a private
member
function
can be
called.

From this
function, both
public and
private data
members can
be accessed.

Public
member
function.

Non-member
function.
Object’s name is
used for both
calling member
functions and
accessing public
data members.

Member functions.
Object’s name is not used.

Private data
members.

Public data
members.

Object members.

Private
member
function.

From this function, both
public and private data
members can be accessed.

Public member function.

Ch09IT.indd 35 16/09/2011 11:20 AM

 36  C Programming: A Q & A Approach

in turn calls the private member function sellcar (see Fig. 9.10). Note that,
within display, we do not use the call oldcar.sellcar because the object
oldcar is already established with the call to display. Also, from main we
call the public member function get_info with oldcar.get_info, which in
turn uses the private data member price. We need not use oldcar.price
within get_info because the object oldcar is already established with the call
to get_info.

Fig. 9.10  How this lesson’s program accesses public and private data 
members from the non-member function main. Compare this figure to  
Fig. 9.9.

Public member
function:

Car::get_info()
{
price
year_made
}

Private
data
members:

double price;

Private member
function:

Car::sellcar()
{
can access public
and private data
members
}

Non-member
function:

void main(void)
{

oldcar.display()

oldcar.get_info()

oldcar.year_made
}

Public member
function:

Car::display()
{
sellcar()
}

Public
data
members:

char colour[20];
int year_made;

8.	 Why	do	we	place	the	definition	of	class	Car	outside	the	main()	function? 
The class Car contains member functions that are not inline functions.
The C++ compiler allows only classes with inline member functions (which
have functions) to be local, otherwise, they must be global. Therefore, class
Car must be global and be placed outside the main() function. The impact
of this is that all non-member functions can call public member functions
by first declaring an object of that class type.

Ch09IT.indd 36 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 37

9.	 Does	this	lesson’s	program	have	a	typical	class	definition?  No, a typical
definition has the data members declared as private and the function
members as public. This form allows any function to call a member
function but allows only member functions to access data members. Such
an arrangement protects the data members from being modified by unau-
thorised functions but allows great access to member functions. We have
not used a typical form in this lesson’s program simply because we are
interested mainly in illustrating the many features of classes and objects.

Concept Recap

1. Member functions are defined within the definition of the class to which
they belong.

2. To call a public member function, we need to provide both the function
name and the object to which it belongs.

3. A private member function can be called only by other member functions
within the same class.

4. The process of linking data and the functions (public and private) that
manipulate the data into a single object is called encapsulation. Through
encapsulation, a member function automatically has access to the data
members of an object when it is called with that object’s name.

Exercises

1.	 The blood pressure for a given individual depends on the person’s age,
sex, health and other environmental factors. Table 9.1 shows the average
normal blood pressure for adults aged between 20 and 49 in a tested
area. The information displayed in Table 9.2 is from four of the research
subjects.

 Table 9.1  Average normal blood pressure for adults

Age (in years) Blood pressure (in mm/Hg)

20–24 119

25–29 121

30–34 123

35–39 125

40–44 128

45–49 130

Chapter 9 An Introduction to C++ 37

Ch09IT.indd 37 16/09/2011 11:20 AM

 38  C Programming: A Q & A Approach

 Table 9.2  Blood pressure information

Patient’s name Age Blood pressure

Jerry 42 132

Linda 36 124

Mary 22 118

Ken 46 144

 Based on this information, write a program to

a. Develop a class named Normal_pressure to read the data in Table 9.1 (all
data members are public).

b. Develop a class named Individual_pressure to read the data in Table 9.2
(all data members, except patient’s name, are private).

c. Compare the blood pressure of each individual with the normal
blood pressure information for his/her age group given in Table 9.1.
Indicate (in percent) how high or how low the blood pres sure of each
person is.

d. Display the information obtained in step (c) as follows:

Patient’s name Age Blood pressure Result

Jerry 42 132 3.1% higher than normal

Linda 36 124 0.8% lower than normal

Mary 22 118 . . .

Ken 46 144 . . .

2.	 As a programmer, you are asked to develop a subject index for an Internet
web page for a travel agency that specialises in the entertainment and leisure
industries. Part of the subject index follows:

Subject Index Phone number

Amusement places 321 418-221-3098, 800-761-2001

Boat renting 456 798-652-1980

Campgrounds and parks 987 238-886-1899

Night clubs 765 457-734-1934, 888-856-3467

Ch09IT.indd 38 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 39

 To use the program, the user should enter a password (which can be any
one of the following: A123, X987 and K456) and then enter the index or
the first four characters of the subject. If the input is correct, the program
will display the subject and related telephone numbers on the screen. You
are asked to

a. Declare a class and use one of its member functions to read the data
listed (all data members, except the telephone number and password,
are public).

b. Call another member function to check whether the password and other
input data are correct.

c. If the input data are correct, then call another member function to
display the output on the screen.

Lesson 9.8 Constructor and Destructor
Functions

Topics

• Constructor functions
• Destructor functions

In the last lesson, we learnt that a C++ object encapsulates data and functions
and thus provides an efficient way of managing data. As we have seen in many
of our programs, initialisation of data is often necessary. C++ provides special
func tions, called constructor functions, that are called automatically when an
object is declared. These functions can be used to initialise the values of data
members and perform other necessary initial operations.

Also, C++ has destructor functions that are called automatically when an
object goes out of scope (which is similar to a variable going out of scope in
C, as occurs to a local variable when a function completes execution). These
commonly have the purpose of freeing memory reserved with dynamic memory
allocation. In this lesson, we perform no particular action with the destructor
functions because we are simply illustrating their potential use.

This program prints the telephone numbers of three people, by creating
a class with data members that hold the telephone numbers and function
members that initialise and print the numbers. It prints the telephone numbers
to the screen and an indication that an object has been destroyed.

Ch09IT.indd 39 16/09/2011 11:20 AM

 40  C Programming: A Q & A Approach

Source Code

#include <iostream.h>
#include <string.h>

class Phone
{
 public:
 void print_number (char *who);
 long get_phone_no (char *who);
 Phone (char *city);
 ~Phone();

 private:
 long phone_no;
 int area_code;
};

Phone::Phone(char *city)
{
 if (strcmp(city, "Denver")==0) area_code = 303;
 else if (strcmp(city, "Boston")==0) area_code = 617;
 else area_code = 800;
}

Phone::~Phone()
{
 cout<<"Object destroyed"<<endl;
}

void main(void)
{
 Phone caller1("Denver"), caller2("Boston"), caller3("USA");

 caller1.print_number ("John");
 caller2.print_number ("Mary");
 caller3.print_number ("Tom");
}

void Phone::print_number(char *who)
{
 cout << "who = " << who << endl;
 cout << "Area_code = " << area_code << endl;
 cout << "Phone_no = " << get_phone_no(who) << "\n\n";
}

long Phone::get_phone_no(char *who)
{
 if (strcmp(who,"John")==0) phone_no=1112233;
 else if (strcmp(who,"Mary")==0) phone_no=4445566;
 else phone_no=7778899;

 return(phone_no);
}

The constructor function must
have the same name as the class.
It cannot have a return type. It can
accept arguments. It is called
automatically when any object of
the given class is declared.

The destructor function must have
the same name as the class but
with the symbol ~ in front. It cannot
have a return type. It is called when
an object goes out of scope.

Definition of the
constructor function.

Definition of the
destructor function.

Arguments used in calling the constructor function.

Declarations of objects.

Calling the public function
print_number through objects
caller1, caller2 and caller3.

Ch09IT.indd 40 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 41

Source Code

#include <iostream.h>
#include <string.h>

class Phone
{
 public:
 void print_number (char *who);
 long get_phone_no (char *who);
 Phone (char *city);
 ~Phone();

 private:
 long phone_no;
 int area_code;
};

Phone::Phone(char *city)
{
 if (strcmp(city, "Denver")==0) area_code = 303;
 else if (strcmp(city, "Boston")==0) area_code = 617;
 else area_code = 800;
}

Phone::~Phone()
{
 cout<<"Object destroyed"<<endl;
}

void main(void)
{
 Phone caller1("Denver"), caller2("Boston"), caller3("USA");

 caller1.print_number ("John");
 caller2.print_number ("Mary");
 caller3.print_number ("Tom");
}

void Phone::print_number(char *who)
{
 cout << "who = " << who << endl;
 cout << "Area_code = " << area_code << endl;
 cout << "Phone_no = " << get_phone_no(who) << "\n\n";
}

long Phone::get_phone_no(char *who)
{
 if (strcmp(who,"John")==0) phone_no=1112233;
 else if (strcmp(who,"Mary")==0) phone_no=4445566;
 else phone_no=7778899;

 return(phone_no);
}

The constructor function must
have the same name as the class.
It cannot have a return type. It can
accept arguments. It is called
automatically when any object of
the given class is declared.

The destructor function must have
the same name as the class but
with the symbol ~ in front. It cannot
have a return type. It is called when
an object goes out of scope.

Definition of the
constructor function.

Definition of the
destructor function.

Arguments used in calling the constructor function.

Declarations of objects.

Calling the public function
print_number through objects
caller1, caller2 and caller3.

Output

who = John
Area_code = 303
Phone_no = 1112233

who = Mary
Area_code = 617
Phone_no = 4445566

who = Tom
Area_code = 800
Phone_no = 7778899

Object destroyed
Object destroyed
Object destroyed

Explanation

1.	 What	are	constructors?  A constructor is a special function used to initialise
or allocate memory for an object. Each time an object of a specified class is
declared, the function is called automatically.

 The name of a constructor function is always the same as the name of its
class. The function may contain any number of arguments or no arguments
at all. For example, the statement

Phone (char *city);

 within the definition of class Phone declares that Phone is a constructor
function, since the function name is identical to its class name. The function
contains one formal argument, city (see Fig. 9.11).

Fig. 9.11  Constructor and destructor

No return type

~ means destructor

Phone

.....
Phone (char* city);

~Phone ();
no argument

class name

constructor name (=class name)

optional arguments

destructor name (=class name)

class

{

};

Chapter 9 An Introduction to C++ 41

Ch09IT.indd 41 16/09/2011 11:20 AM

 42  C Programming: A Q & A Approach

 A constructor is an optional function. When you define a class, you may
define no constructor at all, in which case the class you define automatically
uses a do-nothing default constructor. The default constructor does not
initialise or check any data members in the class. You may define more than
one constructor in a given class, each with a different argument list. These
constructors behave like overloaded functions. For further details, please
see the manual of your C++ compiler.

2.	 How	 do	 we	 define	 a	 constructor?  A constructor is defined more or less
like any other regular function. In general, the definition starts with the
class name, fol lowed by the scope resolution operator, the name of the
constructor, the argument list and the function body. For example, the
statements

Phone::Phone(char *city)
{
 if (strcmp(city, “Denver”)==0) area_code = 303;
 else if (strcmp(city, “Boston”)==0) area_code = 617;
 else area_code = 800;
}

 define the constructor function Phone. The function contains one argu-
ment, and the argument is used to select the appropriate area_code. The
data initialisation and checking process can be as extensive as you like in
a constructor function. The function body typically includes code for the
assignment of values to data members, allocation of memory or checking
the validity of input data.

 Note that a constructor has no type (not even a void type) and can never
return a value.

3.	 How	do	we	declare	an	object	using	a	class	that	contains	a	constructor?  If
the constructor contains arguments, then we declare the object with the
actual arguments; otherwise, we declare the object with no actual arguments.
For example, the statements

Phone caller1(“Denver”), caller2(“Boston”), caller3(“USA”);

 declare three objects, caller1, caller2 and caller3, each with different actual
argu ments, Denver, Boston and USA, respectively. After the declaration,
the construc tor is called automatically, and the three objects are given
values for the member area_code: 303, 617 and 800, respectively.

4.	 What	 is	 a	 destructor?  A destructor is an optional member function that
is called automatically when a class object is out of scope. The name of a
destructor starts with a tilde (~), followed by its class name. A destructor
has no arguments and returns no value. For a simple class, we usually need

Ch09IT.indd 42 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 43

not write a destructor. For a more com plicated class, a destructor is used
to do clean-up work when an object is destroyed. This program includes a
destructor

~Phone();

 that prints a message when an object is destroyed. In this program, the
three objects – caller1, caller2 and caller3 – are out of scope when the
program terminates. At that time, the destructor function for each object
is called.

Concept Recap

1. A constructor is used to initialise or allocate memory for an object.
2. A destructor is an optional member function that is called automatically

when a class object is out of scope. The destructor is usually used to do
clean-up work in a complex class.

Exercises

1. Write a program that uses a specified character to draw a rectangle on the
screen. The program should contain a constructor that uses the following
formal argu ments:

char border – any printable character to be used to draw
the border of a rectangle.

double left – left coordinate of a rectangle on the
screen, 0<=left<=80

double right – right coordinate of a rectangle on the
screen, right>=left, 0<=right<=80

double top – top coordinate of a rectangle on the
screen, 0<=top<=25

double bot – bottom coordinate of a rectangle on the
screen, bot>=top, 0<=bot<=25

 For example, if a user enters

* 10 60 5 20

 the program should use the character * to draw a rectangle from x= 10 to x =
60 and y = 5 to y = 20. If the user enters incorrect data, such as left = 99, then
the program should use the default left = 0 instead to draw the rectangle.

2.	 Write a program to calculate the total number of days between 1 January
and a specified day, month and year. The program should contain a class
that

Chapter 9 An Introduction to C++ 43

Ch09IT.indd 43 16/09/2011 11:20 AM

 44  C Programming: A Q & A Approach

a. Has a member function to read the input date. The input format is day/
month/year.

b. Has a constructor function to initialise the number of days in any month
of a given year. For a leap year, the total days in February is 29.

c. Has a member function to display the output.

 For example, if a user enters

3/5/2012

 The program should display

There are 65 days between 1/1/2012 and 3/5/2012.

Lesson 9.9 Inheritance

Topics

• Inheritance
• Base and derived classes
• Reusable code

In daily life, we classify items with common features into a group. The item
with the most general characteristics is used to form the root or base, the base
is then used to derive other items with more specific features. C++ allows us to
model such a system using a base class and derived classes.

For example, in C++ we may select Motor_vehicle, a vehicle moving on
wheels, as our base class. We give the base class the characteristic of num_
headlights = 2. From Motor_vehicle, we can derive a class, Bus, and another
class, Truck. The class Bus contains num_headlights = 2 and may also have seat_
number = 50. Truck has num_headlights = 2 and may also have load_capacity
= 10 tons. Using C++ base and derived classes, we need not include num_
headlights = 2 in the Bus and Truck classes, as these characteristics are obtained
automatically from the base class, Motor_vehicle.

The mechanism of obtaining features from simpler and more general types
is called inheritance. Inheritance is one of the most important features that
distinguishes C++ from C. Inheritance allows us to reuse and extend existing
classes with out having to rewrite the original code. In the program for this
lesson, we develop a base class named Parent and a derived class named
Child. The object of the Child class, son, inherits the members of the Parent
class. The program prints the names and other information of a parent and
a child.

Ch09IT.indd 44 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 45

Source Code

#include <iostream.h>
#include <string.h>

class Parent
{
 public:
 void display(void);
 Parent();

 private:
 char last_name [20];
 char first_name[20];
 double income;
};

class Child : public Parent
{
 public:
 void info(char *first, int age);
 void print_info(void);
 Child();

 private:
 char first_name[20];
 int age;
};

Parent::Parent()
{
 strcpy(last_name,"Smith");
 strcpy(first_name,"John");
 income=1234.56;
}

Child::Child():Parent()
{
}

The base class is Parent.

Both Parent and Child have
first_name arrays. However, only
Parent has a last_name array.

Child is a derived class.

Constructor function for Parent. This
function gives the Parent class a first_
name, last_name and income.

Constructor function for Child. Note that
the base function Parent is given.

This indicates that Child
inherits from Parent.

void main(void)
{
 Child son;

 cout << "About son information --------------------------\n";
 son.info("Ali", 23);
 son.print_info();

 cout << "\n\nChild uses Parent’s member function in main-----\n";
 son.display();

}

void Child::print_info(void)
{
 cout << "\nChild uses Parent’s member function in print_info --";
 cout << "\nChild’s first_name = "<<first_name<<endl;
 display();
}

void Parent::display(void)
{
 cout << "Parent firstname = " << first_name <<endl;
 cout << "Parent last_name = " << last_name <<endl;
 cout << "Parent income = " << income <<endl<<endl;
}

void Child::info(char *first, int years)
{
 strcpy(first_name, first);
 age=years ;
 cout << "Child firstname = " << first_name << endl;
 cout << "Child age = " << age << endl;
}

Declaring son to be an object of class Child. Both the Parent and
Child constructor functions are executed with this declaration.

Calling Child function info as a member of object
son. This function gives son a first name and age.

Calling display() from main. We associate an object with it (son).

Calling display() from print_info. We need not
associate an object with it because, in calling
print_info, we have already referenced an object (son).

Here, first_name refers
to first_name in the
Parent class.

Here, first_name refers
to first_name in the
Child class.

Ch09IT.indd 45 16/09/2011 11:20 AM

 46  C Programming: A Q & A Approach

void main(void)
{
 Child son;

 cout << "About son information --------------------------\n";
 son.info("Ali", 23);
 son.print_info();

 cout << "\n\nChild uses Parent’s member function in main-----\n";
 son.display();

}

void Child::print_info(void)
{
 cout << "\nChild uses Parent’s member function in print_info --";
 cout << "\nChild’s first_name = "<<first_name<<endl;
 display();
}

void Parent::display(void)
{
 cout << "Parent firstname = " << first_name <<endl;
 cout << "Parent last_name = " << last_name <<endl;
 cout << "Parent income = " << income <<endl<<endl;
}

void Child::info(char *first, int years)
{
 strcpy(first_name, first);
 age=years ;
 cout << "Child firstname = " << first_name << endl;
 cout << "Child age = " << age << endl;
}

Declaring son to be an object of class Child. Both the Parent and
Child constructor functions are executed with this declaration.

Calling Child function info as a member of object
son. This function gives son a first name and age.

Calling display() from main. We associate an object with it (son).

Calling display() from print_info. We need not
associate an object with it because, in calling
print_info, we have already referenced an object (son).

Here, first_name refers
to first_name in the
Parent class.

Here, first_name refers
to first_name in the
Child class.

Output

About son information -------------------------------
Child firstname = Ali
Child age = 23

Child uses Parent's member function in print_info ------
Child’s firstname = Ali
Parent firstname = John
Parent last_name = Smith
Parent income = 1234.56

Child uses Parent's member function in main ------------
Parent firstname = John
Parent last_name = Smith
Parent income = 1234.56

Ch09IT.indd 46 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 47

Explanation

1.	 What	 are	 base	 and	 derived	 classes?  A class from which new classes are
derived is called a base class. A class derived from a base class is called a
derivedclass. A derived class can further be used as a base class to derive
more next genera tion classes. Therefore, we can create class hierarchies
where each class serves as a parent or root of a new class.

2.	 How	do	we	define	a	C++	derived	class?  A C++ derived class is generated
from a base class. Therefore, before we can define a derived class, we have
to have a base class defined. Any regular C++ class, with or without a
constructor, can be used as a base class. However, if we want the derived
class to inherit some features from the base class, we need to include a
constructor function in the base class to initialise those features. For
example, in this program, we use a base class named Parent and the con-
structor function

Parent::Parent()
{
 strcpy(last_name,”Smith”);
 strcpy(first_name,”John”);
 income=1234.56;
}

 to initialise the data members, last_name, first_name and income, of class
Parent. Any class derived from the base class will inherit the values of all
these data auto matically. Inheritance is achieved by taking existing classes
and deriving new classes from them. A derived class may selectively inherit
some members, reject or modify other members from the base class and add
new members of its own. If we do not include a constructor in our base
class, any object defined by its derived class will still contain all its base
class data members and member functions, although the data members will
not have initial values.

 Once we have defined a base class, we can define derived classes for it.
A base class can be used by any number of derived classes. Each derived
class may have data members or member functions that are different from
that of the other derived classes. In this lesson, we define only one derived
class, named Child. The syntax for a derived class is as follows:

class derived_class_name:access_modifierbase_class_name
{
 derivedclassdataandfunctionmembers
 ...
}

Ch09IT.indd 47 16/09/2011 11:20 AM

 48  C Programming: A Q & A Approach

 access_modifier is used to specify the accessibility of the derived class and
must be one of the keywords private, protected or public. By selecting the
proper access_modifier, we control how data members and member functions
of its base class are to be accessed from the derived class. In general, for
a given derived class, the access to any member of its base class can be
controlled to be more restrictive but never less restrictive. This means that
lower level classes may not be allowed to access members of an upper
class. This is true in life and also true in C++. Without this control, anyone
can write a derived class to modify or destroy data in a base class. The
statements below

class Child : public Parent
 {
 public:
 void info(char *first, int age);
 void print_info(void);
 Child();

 private:
 char first_name[20];
 int age;
 };

 define Child to be a derived class of the base class Parent; access_modifier
is set to public. The public modifier allows objects of the Child class to
have the same freedom to access members of the Parent class as any other
objects of the Parent class. If the access modifier is private or protected
instead of public, Child objects may not be able to reach certain members
of the Parent class. For further details, please see the manual of your C++
compiler. The definition also tells us that the derived class Child contains
two data members, first_name and age, member functions info() and print_
info(), and a constructor Child(). For the general form of a derived class,
see Fig. 9.12.

3.	 How	 do	 we	 define	 a	 constructor	 for	 a	 derived	 class?  The syntax of the
constructor for a derived class is as follows:

dc_name::dc_name(dc_list):Bc_name(Bc_list)
{
 derived class constructor function body
...
}

 where dc_name is the derived class name, dc_list is the derived class
parameter list, Bc_nameis the base class name and Bc_listis the base class
parameter list.

Ch09IT.indd 48 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 49

 For example, the statements

Child::Child():Parent()
{
}

 define the constructor for the derived class Child. In this lesson’s program,
both the base class and the derived class constructors have empty parameter
lists. This text includes no example of a base class constructor with a non-
empty parameter list.

4.	 How	do	we	declare	objects	of	a	derived	class?  Objects of any derived class
can be declared directly. We are not required to declare objects of a base class
before declaring objects of a derived class. For example, the statement

Child son;

 declares son as an object of Child without declaring any object of the Parent
class. After we declared the son object of the Child class, the constructor of
its base class, Parent, and then the constructor of the derived class Child are
executed auto matically.

Fig. 9.12  The general form of a derived class

derived class constructor name
optional arguments for derived

class constructor

optional arguments
for base class constructor

class Child: Public Parent
{.....

}

derived class name
access modifier to
base class members

base class name
colon

derived class data and function members

function body for
derived class constructor

definition of
derived class

scope resolution operator
derived class name

base class name

colon

Child::Child():Parent()
{.....

}

constructor for
derived class

Ch09IT.indd 49 16/09/2011 11:20 AM

 50  C Programming: A Q & A Approach

5.	 When	 an	 object	 of	 a	 derived	 class	 is	 declared,	 how	 much	 memory	 is	
reserved?  New memory for data members of both the derived and base
classes is reserved.

6.	 When	the	data	members	are	private	and	the	function	members	are	public	
for	both	the	base	and	derived	classes,	how	can	we	access	a	derived	class	
object’s	 data	 members	 from	 a	 non-member	 function? First, we declare
an object of the derived class type in the function. Then, we call a public
derived class or base class function to access the private data members. This
is illustrated in Fig. 9.13. Study the figure to understand why we cannot go
directly from the non-member function to the private data members.

Fig. 9.13  In this illustration we assume that all data members are private and all function 
 members are public. To access the private data members of the derived class from a non-
member function, we must call a public derived class function. To access the private data 
members of the base class from a non-member function, we can call a public base class 
function directly or first call a public derived class function, which in turn calls a public 
base class function. Compare this figure to Fig. 9.14.

Declare
object here.
Call public
member
functions
using the
object’s name.
From this
function,
we cannot
access any
data members
because they
are all private.

From this function,
private derived class
data members can be
accessed or public
base class member
functions can be
called to access
private base class
data members.

Public derived class
member function.

Non-member
function.
Object’s name is
used for calling
member
functions.

Public member functions.
Object’s name is not used.

Private derived
class data members.

Private data
members.

Private base class
data members.

Derived class object members.

Public base class
member function.

From this function,
private base class data
members can be accessed.

Ch09IT.indd 50 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 51

Fig. 9.14  How this lesson’s program accesses private data members in 
both the derived and base classes from the non-member function main. 
Compare this figure to Fig. 9.13.

Members of son object.

Public derived
class function:

Child::info()
{
first_name;
age;
}

Public base
class function:

Parent::display()
{
first_name;
last_name;
income;
}

Public derived
class function:

Child::print_info()
{
display()
}

Private derived
class data members:

char first_name[20];
int age;

Private base class
data members:

char first_name[20];
char last_name[20];
double income;

Non-member
function:

void main(void)
{
son.info()

son.print_info()

son.display
}

7.	 How	have	we	accessed	private	data	members	of	both	the	derived	and	base	
classes	in	this	lesson’s	program?  This is illustrated in Fig. 9.14. The figure
shows that it is necessary to use only the object’s name in the non-member
function and that we can access private base class data members only from
a base class member function. Compare this figure to Fig. 9.13. Notice that
Fig. 9.14 parallels Fig. 9.13.

Ch09IT.indd 51 16/09/2011 11:20 AM

 52  C Programming: A Q & A Approach

Concept Recap

1. We can use the derived class to extend the function of a base class, so as to
reuse the code of the base class

class derived_class_name:access_modifierbase_class_name
{
 derivedclassdataandfunctionmembers
 ...
}

 access_modifier is used to specify the accessibility of the derived class and
must be one of the keywords private,protected or public.

2. Private data members of the base class can only be accessed from a base
class member function of a derived class.

Exercises

1.	 Write a program that has a base class Car and two of its derived classes Bus
and Truck. The classes must contain the following data members:

Car : wheel, colour
Bus : seat_num
Truck: load_capacity

 The output should be as follows:

Base class CAR information---------------
Wheel = 4
Colour = White

Derived class Bus information------------
Wheel = 4
colour = Yellow
Seat_num = 50

Derived class truck information----------
Wheel = 4
colour = Blue
Load_capacity = 8 tons

2.	 Given the following definition for a Circle class

class Circle
{
 double x0, y0, radius;
}

Ch09IT.indd 52 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 53

 derive a new class to represent a Cone class. The class contains a member
func tion that can calculate and display the volume of a cone. Test your
program with a cone that has the following parameters:

x0=100.0
y0=200.0
radius=300.0
cone height = 400.0

3.	 Based on the Cone class (which is derived from the Circle class) in Exercise
2, derive a new class to represent a Truncated_cone class. The class contains
a member function that can calculate and display the volume of a truncated
cone. Test your program with a truncated cone that has the following
parameters:

Top of truncated cone
x0=100.0
y0=200.0
radius=300.0

Bottom of truncated cone
x0=100.0
y0=200.0
radius=500.0
height of truncated cone = 400.0

Application Program 9.1: Electrical Circuits
The design of classes is a very important part of writing C++ programs. In this
text, we lack the space to devote to class design. Instead, we illustrate with an
example some of the aspects of designing classes. What we have here is not meant
to be a complete or thorough representation of the development of classes. Our
main interest is to give you some exposure to C++. Hence, the representations
are simple rather than general or efficient.

Problem Statement

The electrical circuit shown in Fig. 9.15 contains seven resistors and a power
supply with a DC voltage of 110.

Write a program to find the magnitude of the cur rent across the power
supply.

Ch09IT.indd 53 16/09/2011 11:20 AM

 54  C Programming: A Q & A Approach

For this circuit, the input is

s 10 20
s 30 0
p
s 40 0
s
p 50 60
p
s 70 0
s

where s indicates that two resistors are in series and p indicates they are in
parallel.

Two resistors can be input per line. The first line indicates that R1 and R2
are in series. The second line uses a dummy value of 0 being in series with R3.
The third line indicates that the two previous sets of resistances (lines 1 and 2)
are in parallel with one another. The fourth line indicates that R4 and a dummy
resistor of 0 are in series. The fifth line indicates that R4 and all of the rest of the
resistance previously calculated are in series. The sixth line indicates R5 and R6
are in parallel. Then the seventh line indicates that the subcircuit formed by R5
and R6 is in parallel to the rest of the resistance previously calculated. The eighth

Fig. 9.15  An example of an electrical circuit

R1 = 10 ohms R2 = 20 ohms

R3 = 30 ohms

R5 = 50 ohms

R4 = 40 ohms

R7 = 70 ohms

voltage = 110 volts
current

R6 = 60 ohms

Ch09IT.indd 54 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 55

line indicates that R7 and a dummy resistor are in series. The last line indicates
that R7 and the rest of the previously calculated resistance are in series. We use
this input to calculate the total resistance of the circuit and the current at the
power supply.

It can be seen from this that it takes some skill and thought to prepare the
input data for this particular circuit. This is true for many advanced engineering
problems. You will find that, in practice, it is necessary to be a talented software
engineer to handle programs.

Solution

Relevant Equations and Background Information.  To find the magnitude of
the current Iwe use Ohm’s law:

 I = V/R (9.1)

where V is the voltage and R is the total resistance in the circuit. In this example,
the voltage is given (110 volts) but the total resistance must be calculated.

When two resistors, R1 and R2, are connected in parallel to each other, the
combined resistance, R12, is

 R12 = 1/(1/R1 + 1/R2) (9.2)

However, when they are connected in series, the combined resistance is

 R12 = R1 + R2 (9.3)

Specific Example

In this example, the circuit contains seven resistors connected in a mix of
paral lel and series patterns. We find the total resistance in a sequence of steps.
For each step, we combine two resistors into one. By doing this a number
of times, we can find the total resistance. The following hand calculation
illustrates how the total resistance is found. We use two arrays, r[] and rtot[],
to assist us in the calculation. Refer to Fig. 9.15 to see how the resistors
are connected:

1. Combine r[0] = 10 and r[1] = 20 in series to get rtot[0] = 10 + 20 = 30, using
equation (9.3).

2. Combine r[0] = 30 and r[1] = 0 in series to get rtot[1] = 30 + 0 = 30.

3. Combine rtot[0] = 30 and rtot[1] = 30 in parallel to get rtot[0] = 1/(1/30.0 +
1/30.0) = 15, using equation (9.2).

4. Combine r[0] = 40 and r[1] = 0 in series to get rtot[1] = 40 + 0 = 40.

Ch09IT.indd 55 16/09/2011 11:20 AM

 56  C Programming: A Q & A Approach

5. Combine rtot[0] = 15 and rtot[1] = 40 in series to get rtot[0] = 15 + 40 = 55.

6. Combine r[0] = 50 and r[1] = 60 in parallel to get rtot[1] = 1/(1/50.0 + 1/60.0)
= 27.27.

7. Combine rtot[0] = 55 and rtot[1] = 27.27 in parallel to get rtot[0] = 1/(1/55.0
+ 1/27.27) = 18.23.

8. Combine r[0] = 70 and r[1] = 0 in series to get rtot[1] = 70 + 0 = 70.

9. Combine rtot[0] = 18.23 and rtot[1] = 70 in series to get rtot[0] = 18.23 +
70 = 88.23. This is the total resistance of the circuit.

The current then is obtained from equation (9.1) as

I = 110/88.23 = 1.30 amps

Note that in this solution, we have used rtot[0] and rtot[1] alternately to hold the
total resistance.

Data Structures and Classes

To keep this first problem as simple as possible, we use only one class and
one object. The class is called Circuit and its public members are functions and
private members are data. The class is

class Circuit
{
 public:
 double series(double r[]);
 double parallel(double r[]);
 void find_resistance(void);
 void find_current(void);
 Circuit (double dummy);

 private:
 double r[2], rtot[2];
 double voltage, current;
 char flag;
};

The meanings of the members are indicated in the source code annotations. The
single object (res_circuit) is declared as

Circuit res_circuit1(110.);

The argument in the declaration initialises the power supply to be 110 volts in
the constructor.

Ch09IT.indd 56 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 57

Algorithm

The algorithm can be seen from the specific example to be as follows:

1. Read the input data for the first subcircuit and calculate its total
resistance.

2. Read the input data for the second subcircuit and calculate its total
resistance.

3. Read the relationship (parallel or series) for the two subcircuits and calculate
the total resistance.

4. Read the input data for the next subcircuit and calculate its total
resistance.

5. Read the relationship (parallel or series) for the previous two subcircuits
and calculate the total resistance.

6. Repeat steps 4 and 5 until the entire circuit is complete.

7. Calculate the current using equation (9.1).

Because we do not focus on the procedural aspects of the programs for this
chapter, we leave it to you to verify that the loop in function find_resistance
performs these steps in a manner similar to the example calculation we have
given.

Source Code
#include <iostream.h>

class Circuit
{
 public:
 double series(double r[]);
 double parallel(double r[]);
 void find_resistance(void);
 void find_current(void) ;
 Circuit (double dummy);

 private:
 double r[2], rtot[2];
 double voltage, current;
 char flag;
};

Circuit::Circuit(double dummy)
{
 r[0]=0.0;
 r[1]=0.0;
 rtot[0]=0.0;
 rtot[1]=0.0;
 current=0.0;
 flag='s';
 voltage=dummy;
}

void main(void)
{
 Circuit res_circuit1(110.);

 res_circuit1.find_resistance();
 res_circuit1.find_current();
}

All of the function members are public.

Function to evaluate series subcircuit.

Function to evaluate parallel subcircuit.

Function to evaluate total
resistance of entire circuit.

Function to evaluate current at the power supply.

All of the data members are private.

Resistances of subcircuit and entire circuit.

flag indicates parallel (“p”) or series (“s”).

Constructor initialises the data.

The constructor function initialises the voltage to be
110 volts when the declaration is executed.

Finding the total resistance of res_circuit1.

Finding the current at the power supply for res_circuit1.

Ch09IT.indd 57 16/09/2011 11:20 AM

 58  C Programming: A Q & A Approach

#include <iostream.h>

class Circuit
{
 public:
 double series(double r[]);
 double parallel(double r[]);
 void find_resistance(void);
 void find_current(void) ;
 Circuit (double dummy);

 private:
 double r[2], rtot[2];
 double voltage, current;
 char flag;
};

Circuit::Circuit(double dummy)
{
 r[0]=0.0;
 r[1]=0.0;
 rtot[0]=0.0;
 rtot[1]=0.0;
 current=0.0;
 flag='s';
 voltage=dummy;
}

void main(void)
{
 Circuit res_circuit1(110.);

 res_circuit1.find_resistance();
 res_circuit1.find_current();
}

All of the function members are public.

Function to evaluate series subcircuit.

Function to evaluate parallel subcircuit.

Function to evaluate total
resistance of entire circuit.

Function to evaluate current at the power supply.

All of the data members are private.

Resistances of subcircuit and entire circuit.

flag indicates parallel (“p”) or series (“s”).

Constructor initialises the data.

The constructor function initialises the voltage to be
110 volts when the declaration is executed.

Finding the total resistance of res_circuit1.

Finding the current at the power supply for res_circuit1.

void Circuit::find_resistance(void)
{

 cout<<"Enter flag, r0, r1"<<endl;
 cin>>flag>>r[0]>>r[1];

 if(flag=='s') rtot[0]=series(r);
 if(flag=='p') rtot[0]=parallel(r);
 cout<<"Subtotal resistance="<<rtot[0]<<endl;

 for (int i=1; i<=4; i++)
 {
 cout<<"Enter flag, r0, r1"<<endl;
 cin>>flag>>r[0]>>r[1];
 if(flag=='s') rtot[1]=series(r);
 if(flag=='p') rtot[1]=parallel(r);
 cout<<"Subtotal resistance="<<rtot[1]<<endl;
 cout<<"Enter flag"<<endl;
 cin>>flag;
 if(flag=='s') rtot[0]=series(rtot);
 if(flag=='p') rtot[0]=parallel(rtot);
 cout<<"Subtotal resistance="<<rtot[0]<<endl;
 }

 cout<<"Total resistance="<<rtot[0]<<endl;

}
void Circuit::find_current(void)
{
 current = voltage/rtot[0];
 cout<<"Current at the power supply = "<<current<<endl;
}

double Circuit::series(double r[])
{
 double rtot;
 rtot=r[0]+r[1];
 return rtot;
}

double Circuit::parallel(double r[])
{
 double rtot;
 rtot=1./(1./r[0]+1./r[1]);
 return rtot;
}

Entering and analysing the resistance
of the first subcircuit.

Entering and analysing the
resistances of the last four
subcircuits.

Printing the total resistance of the circuit.

Evaluating the current using equation (9.1).

Evaluating the resistance
using equation (9.3).

Evaluating the resistance
using equation (9.2).

Ch09IT.indd 58 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 59

void Circuit::find_resistance(void)
{

 cout<<"Enter flag, r0, r1"<<endl;
 cin>>flag>>r[0]>>r[1];

 if(flag=='s') rtot[0]=series(r);
 if(flag=='p') rtot[0]=parallel(r);
 cout<<"Subtotal resistance="<<rtot[0]<<endl;

 for (int i=1; i<=4; i++)
 {
 cout<<"Enter flag, r0, r1"<<endl;
 cin>>flag>>r[0]>>r[1];
 if(flag=='s') rtot[1]=series(r);
 if(flag=='p') rtot[1]=parallel(r);
 cout<<"Subtotal resistance="<<rtot[1]<<endl;
 cout<<"Enter flag"<<endl;
 cin>>flag;
 if(flag=='s') rtot[0]=series(rtot);
 if(flag=='p') rtot[0]=parallel(rtot);
 cout<<"Subtotal resistance="<<rtot[0]<<endl;
 }

 cout<<"Total resistance="<<rtot[0]<<endl;

}
void Circuit::find_current(void)
{
 current = voltage/rtot[0];
 cout<<"Current at the power supply = "<<current<<endl;
}

double Circuit::series(double r[])
{
 double rtot;
 rtot=r[0]+r[1];
 return rtot;
}

double Circuit::parallel(double r[])
{
 double rtot;
 rtot=1./(1./r[0]+1./r[1]);
 return rtot;
}

Entering and analysing the resistance
of the first subcircuit.

Entering and analysing the
resistances of the last four
subcircuits.

Printing the total resistance of the circuit.

Evaluating the current using equation (9.1).

Evaluating the resistance
using equation (9.3).

Evaluating the resistance
using equation (9.2).

Output

 Enter flag, r0, r1
Keyboard input s 10 20
 Subtotal resistance=30
 Enter flag, r0, r1
Keyboard input s 30 0
 Subtotal resistance=30
 Enter flag
Keyboard input p
 Subtotal resistance=15
 Enter flag, r0, r1
Keyboard input s 40 0
 Subtotal resistance=40
 Enter flag
Keyboard input s
 Subtotal resistance=55
 Enter flag, r0, r1
Keyboard input p 50 60
 Subtotal resistance=27.27
 Enter flag
Keyboard input p
 Subtotal resistance=18.23
 Enter flag, r0, r1
Keyboard input s 70 0
 Subtotal resistance=70
 Enter flag
Keyboard input s
 Subtotal resistance=88.23
 Total resistance=88.23
 Current at the power supply=1.30

Ch09IT.indd 59 16/09/2011 11:20 AM

 60  C Programming: A Q & A Approach

Comments

To keep this program as simple as possible, we eliminated data checking and
avoided the possibility of a division by 0 if the data is entered incorrectly.
However, these should be in a program that is meant for commercial use.

Modification Exercises

1.	 Modify the program so that it is not possible to have a division by 0 in
function parallel.

2.	 Modify the program to handle two similar resistance circuits. The first
should supply 300 volts and the second 450 volts.

3.	 Modify the program so that it can analyse three resistances instead of just
two for each subcircuit.

Application Exercises

9.1.	Write a program that can find the current in the circuit shown below and
for any values of the resistances. Assume that many subcircuits of the type
shown can be placed in the circuit.

R1 = 10 ohms R2 = 20 ohms R3 = 30 ohms

R4 = 40 ohms R5 = 50 ohms R6 = 60 ohms

110 volts

9.2.	The air pollution level of a city on a given day is a function of the time of day
(in hours). As an environmental specialist, you have collected the following
pol lution level readings at different times:

Ch09IT.indd 60 16/09/2011 11:20 AM

Chapter 9 An Introduction to C++ 61

Time Pollution level

0:00 58

2:00 51

4:00 47

5:00 51

8:00 55

11:00 67

14:00 78

16:00 86

19:00 82

20:00 86

23:00 65

 Write a program to plot the pollution level-time curve. The program should
contain two classes. The first class should have a member function to
read the input file as just shown and another member function to find the
range of the data for plotting. The second class should handle the plotting
routine.

9.3. As a software engineer, you are asked to write a section of a user-friendly
inter face for an application program. The section intends to multiply two
numbers based on a user’s input string. The numbers can be either real or
complex. Use the following four input strings to test your program:

3 × 4
5 × (6 – 7i)
(–8 + 9i) × 10
(1 + 2i) × (–3 – 4i)

 The program should generate the following output:

3 × 4 = 12
5 × (6 – 7i) = 30 – 35i
(–8 + 9i) × 10 = –80 + 90i
(1 + 2i) × (–3 – 4i) = 5 – 10i

 The program should contain two classes. Objects belonging to the first class
should be able to decompose the input string to correct numerical operators

Ch09IT.indd 61 16/09/2011 11:20 AM

 62  C Programming: A Q & A Approach

and operands. Objects of the second class should perform the calculations
and display the output on the screen.

9.4.	Given three sides of a triangle a,band c,its area can be calculated using the
formula

heron’s formula

Area = s’ (s’ – a)(s’ – b)(s’ – c)
 s’ = semi-perimeter

⇒ formula should be

Area =
1
4

s(s – 2a)(s – 2b)(s – 2c)

where s’ =
a + b + c

2
and s = a + b + c

 where s is the perimeter of the triangle. Write a program that contains a
class named Tri_area.The class should contain a data member that accepts a,
b and c as arguments and calculates the area of the triangle.

Ch09IT.indd 62 16/09/2011 11:20 AM

