
Chapter Objectives, Concept Recap and
Chapter Review that help students to quickly
grasp key concepts at strategic points in the
book

C H A P T E R

2
Chapter Objectives
Upon completion of this chapter, you will be able to:

• Declare variables to be used in C program.
• Read keyboard input from the user.
• Control the output format with the printf statement.
• Construct complex mathematical expressions.

In order for a computer program to be useful, it must have functions for per-
forming calculations as well as providing immediate response to user input. In
this chapter you will learn how to handle variables and to perform arithmetic
calculations.

Lesson 2.1 Variables: Naming, Declaring,
Assigning and Printing Values

Topics

• Naming variables
• Declaring data types
• Using assignment statements
• Displaying variable values
• Elementary assignment statements

Variables are crucial to virtually all C programs. You have learnt about variables
in algebra, and you will find that, in C, variables are used in much the same
manner.

Suppose, for instance, that you want to calculate the area of 10,000 triangles,
all of different sizes. And suppose that the following information is given:

1. The length of each of the three sides.
2. The size of each of the three angles.

67

8. Why was so much attention given to the printf statement? There are
two reasons. One is that you will write printf statements very frequently
and other aspects of programming will become easier for you if you are
comfortable writing printf statements. It is a good idea to become proficient
at writing them now so that you can easily go on to other pro gramming
issues. The other reason is that improperly written printf state ments are the
source of many errors for beginning programmers. If you understand printf
statements, you will substantially reduce your program ming errors.

Concept Recap

1. The form of a define directive is

#define symbolic_name replacement

 where symbolic_name that occurs throughout the rest of program will be
replaced by replacement during compilation by the preprocessor.

2. The complete format specification is

%[flag][field width][.precision]type

 where format string components enclosed by [] are optional.

3. The output of a floating point number in scientific notation is

[sign]d.ddd e[sign]ddd

 where d represents a digit. Note that a number in this form is equivalent to

[sign] d.ddd × 10[sign]ddd

Exercises

1. True or false:
a. The statement printf(“%-3d”,123); displays –123.
b. The statement printf(“%+2d”,123); displays +12.
c. The statement printf(“%-2f”,123); displays 12.0.
d. The statement printf(“%+f.3”,123); displays .123.
e. The format specification for an int type data should not contain a

decimal point and precision; for instance, %8.2d is illegal.

2. Find errors, if any, in these statements:
a. #DEFINE PI 3.1416
b. #define PI 3.1416;
c. #define PI=3.14; More_AccuratePI=3.1416;
d. printf(“%f”,123.4567);
e. printf(“%d %d %f %f”,1,2,3.3,4.4);

83

5. Hand calculate the values of x, y and z in the following program and then
run the program to check your results:

#include <stdio.h>
void main(void)
{
 float a=2.5,b=2,c=3,d=4,e=5,x,y,z;
 x= a * b - c + d /e ;
 y= a * (b - c)+ d /e ;
 z= a * (b - (c + d) /e) ;
 printf(“x= %10.3f, y= %10.3f, z=%10.3f”,x,y,z);
}

6. Calculate the value of each of the following arithmetic expressions:

13/36, 36/4.5, 3.1*4, 3-2.6, 12%5, 32%7

 Solutions

1. a. False b. False c. True d. False e. True f. False g. False
 h. False i. True j. False k. True l. False m. False
3. a. 30, 30, 30
 b. 31, 31, 30
 c. 32, 33, 33
 d. program crash due to division by zero.
6. 0, 8.0, 12.4, 0.4, 2, 4

Chapter Review

In this chapter, we have learnt how to control the output of program variables
using the format specifications. We also discuss how to declare variables in your
C program, as well as how to process data using arithmetic operators. Then
we use scanf to read some values from the keyboard into our program, and use
printf to print the values of a variable to the screen. Finally, we studied the issues
relating to arithmetic operations in C expressions.

Now you can use all that you have learnt in this chapter to write programs
that can achieve complex tasks such as scientific calculations.

00 FMIT.indd 12 24/08/2011 1:41 PM

 166

and the way the loops are executed? (Hint: The first statement indicates how
the loop begins, the second statement indicates how the loop ends, and the third
statement indicates how the loop goes from the beginning to the end.) In the
first loop, note where semicolons are located. In the second loop, note the use of
braces. Can you figure out why braces are used in one loop and not the other?

Source Code

Test expression.

“Increment” expression.

Initialisation.

Body
of for
loop.

#include <stdio.h>
void main(void)
{
 int day, hour, minutes;

 for(day=1; day<=3; day++)
 printf("Day=%2d\n", day);

 for (hour=5; hour>2; hour--)
 {
 minutes = 60 * hour;
 printf("Hour = %2d, Minutes=%3d\n",hour, minutes);
 }
}

Output

Day= 1
Day= 2
Day= 3
Hour = 5, Minutes=300
Hour = 4, Minutes=240
Hour = 3, Minutes=180

Explanation

1. What is a for loop? A for loop is another iterative control structure. For
example, the statements

for (day=1; day<=3; day++)
 printf(“Day=%2d\n”, day);

 cause the printf() function to display the value of day three times; that is,
from day equals 1 to day equals 3. The for loop takes one of the following
forms:

for (loop_expressions)
 single statement for_loop body;

 or

157

The C language provides several methods for looping. The simplest one is
the while loop. A while loop contains just two parts, a test condition part and an
execution part. When a program reaches a while statement, the test condition
will be checked. If the condition is true, the execution part will be executed and
continued to be executed until the test condition becomes false. When the test
condition becomes false, the execution part is bypassed and program control is
transferred to a point after the end of the while loop.

Look for the line of text in the source code with the keyword while.
From what you know about statement blocks and relational expressions, can
you determine which expression represents the test condition? Which are the
statements in the execution part? Look at the output. How many times has the
loop been executed? Why did it execute this many times?

Source Code

#include <stdio.h>
 void main(void)
 {
 int i;

 i = 1;

 while (i<= 5)
 {
 printf (" Loop number %d in the while_loop\n",i);
 i++;
 }

}

Statement block is repeatedly
executed until test expression
becomes false.Test expression.

Incrementing counter variable.

Output

Loop number 1 in the while_loop
Loop number 2 in the while_loop
Loop number 3 in the while_loop
Loop number 4 in the while_loop
Loop number 5 in the while_loop

Explanation

1. What is the meaning of while(i<=5) {statements}? It means that, while
the variable i is less than or equal to 5, the statements between the braces
are executed repeatedly. When the variable i becomes greater than 5, the
statements between the braces are not executed. In general, the structure of
a C while loop is

Simple sample programs consisting of source
code accompanied by guided observations,
and output

00 FMIT.indd 13 24/08/2011 1:41 PM

171

Explanation

1. What is the effect of the loop expression i+=2? In this lesson’s outer for
loop, it is an increment expression that increases the value of i by 2 for
each loop.

 You will also find that not all of your loops involve addition as the
increment expression. For instance, an equally valid expression is i*=2.
What is used depends entirely on the problem being solved.

2. What is a nested for loop? A nested for loop has at least one loop within
a loop. Each loop is like a layer and has its own counter variable, its own
loop expression and its own loop body. In a nested loop, for each value of
the outermost counter variable, the complete inner loop will be executed
once. This means that the inner loop will be executed more frequently than
the outer loop. The example in this lesson has two counter variables, i and
j, where i is the outer loop counter and j is the inner loop counter. The
outer loop is executed three times, when i = 1, 3 and 5. For each i value,
the j loop is executed four times. Since the j values in each j loop can be 1,
2, 3 and 4, the total number of times that the inner loop is executed is 3 * 4
or 12 times. A conceptual illustration of the nested for loop for this lesson’s
program is shown in Fig. 4.12. Observe from this figure how the value of j

Fig. 4.12 Nested for loop for this lesson’s program. The unlabelled
numbers are the values of j. For simplicity, the test expressions and
their proper locations are not shown.

{

void
main(void)
{
Code before
loops

{
code before
inner loop
for(j=1;....)
{k=i+j
printf(...)}

Values of
j.

for(i=1;)

2
3

4

2
3

4

2
3

4

i=3

i=5

m=k+i
}

71

Output

Before increment, i= 1, j= 1
After increment, i= 2, j= 2,
 k= 1, h= 2
m= 1, p=1.0
n= 1, q=1.5

Original k1=10, k2=20, k3=30, k4=40, k5=50
New k1=12, k2=18, k3=60, k4=20, k5= 0

a= 7, b= 6, c= 5
d=4.0, e=3.0

x= a + b -c /d *e = 9.250
y= a +(b -c) /d *e = 7.750
z=((a + b)-c /d)*e = 35.250

Explanation

1. How do we initialise variables? There are two ways to initialise variables.
• Method 1: Use an assignment statement to initialise a variable, for

 example,

 e=3;

• Method 2: Initialise a variable in a declaration statement, for example,

 float a=7, b=6;

2. Assuming that int variables i and j are equal to 1, is the meaning of
k = i++; the same as h = ++j? No. In the first statement, the value of
i is first assigned to the variable k. After the assignment, the variable i is
incremented by the post-increment operator ++ from 1 to 2. Therefore, after
executing

k=i++;

 i = 2 and k = 1. However, for h = ++j, the value of j is first increment-
ed by the pre-increment operator ++ from 1 to 2. After the increment, the
new j value, which now is equal to 2, is assigned to the variable h. Therefore,
after executing

h=++j;

 j = 2 and h = 2. In other words, the statement

k=i++;

71

Explanation of code clearly presented in
question and answer format

00 FMIT.indd 14 24/08/2011 1:41 PM

179

3. Modify the program so that it can handle four pair of lines and, therefore,
find four intersection points. You should put in a loop to do this.

4. Modify the program so that it can handle a variable (n) number of lines. The
input data file would be

n
m1 x1
m2 x2
m3 x3
.
.
.
mn xn

Application Program 4.2: Area Calculation
– For Loop

Problem Statement

Calculates the areas of four different right triangles. As illustrated, for loops
can be used to repeat execution of C statements. As such, they can be used in
programs that perform the same tasks as those done by many of the application
programs in Chapter 3.

This application program uses a for loop to perform the same task as
Application Program 3.1, which calculates the areas of four different right
triangles as an example of using patterns to write programming statements.

Look at this portion of the program development in Application Program
3.1 and then read Application Program 4.2 and follow the steps through the
for loop.

Compare both application programs. Closely follow the flow of Application
Program 4.2, statement by statement. Use your calculator and the loop in the
program to fill in this table.

Pay particular attention to the way the variables horizleg and vertleg are
used. You can see that they are initialised before the for loop. Once in the for
loop, the area is first calculated and then printed. Then new values of horizleg

183

Modification Exercises

1. Modify the program to perform the following tasks:
a. Create a table of values that go from degC=0 to degC=100 in incre-

ments of 1 degree.
b. Create a table with degF in the left column and degF incrementing by

5 degrees from 250 to 1300.

Application Program 4.4: Temperature Unit
Conversions – Loop and If-Else Control Structure

Problem Statement

Write a program that converts an input temperature from degrees Celsius to
degrees Fahrenheit and vice versa. The program will terminate when a negative
degree is inputted.

Solution

Relevant Equations

The equation developed in Application Program 4.3 is

F = C*(9/5) + 32

where F is degrees Fahrenheit and C is degrees Celsius. In addition, our program
wants to convert degrees Fahrenheit into degrees Celsius. The corresponding
equation is

C = (F–32) *5/9

Algorithm

According to the problem statement, a loop is needed to process each input
degree. Besides, the program needs to be able to distinguish which conversion
to perform. The algorithm becomes

Read user input
Loop as long as input is non-negative
 If input is in degree Celsius
 Calculate the corresponding value in degree Fahrenheit
 Else if input is in degree Fahrenheit
 Calculate the corresponding value in degree Celsius

The source code follows this algorithm step by step. Read the program to see how
it is done. Once again, follow through the while loop carefully to understand

Application Programs illustrating the
usefulness of the C language for solving
engineering and computer science problems

00 FMIT.indd 15 24/08/2011 1:41 PM

 322

Comments

In this program, we defined the maximum number of points as 100 and read in
the actual number of data points as the first item in the data file. Should we want
to analyse more than 100 points, we would need to change this value.

We would like to comment here about developing efficient code. Because
we are very concerned in developing efficient code, we are concerned in as-
sessing the efficiency of our algorithms. Part of assessing the efficiency of an
algorithm that involves comparisons is evaluating how many comparisons are
made in executing the algorithm. Determining the number of comparisons is
not necessarily straightforward, different situations require different numbers
of comparisons to be made. For instance, for our algorithm to evaluate the
median of a list of n numbers, we see that if the median is the first value in our
list (just by chance) we will make only n comparisons (because just one pass
through the list gives us the median).

However, should the median be the last value in the list (again by chance)
we would make n comparisons for each of the n values; that is, n2 comparisons
to perform a median evaluation. If we had 1000 values in our list, this would
mean we would make 10002 = 1 million comparisons. You can see that, for
this particular algorithm, the number of comparisons can be quite great.
Therefore, developing a more efficient algorithm may be quite beneficial. We
will not develop one here; however, we want to make you aware that a part of
engineering and computer science involves the search for efficient algorithms.
You may very well take courses later in your educational career that focus on
algorithm development.

Modification Exercises

1. Replace the do-while loop with a while loop that needs no break statement.
2. Make x[] an array of doubles rather than integers.
3. Modify the program to handle 12 lists of wave height data (one for each

month in a year) in the input file. The input data file would be as follows:

n1
h1 h2 h3 . . . hn1

n2
h1 h2 h3 . . . hn3

.

.

.

.
n12
h1 h2 hn12

 332

 printf (“%1d”, a);
 a = !a;
 sum += count;
 } while (sum<SIZE2);
 printf (“\n”);
 }
 fclose (outfile);
}

Comment

We have indeed created a file that is considerably smaller than the original file,
and it can be used to recreate the original file should we want to do so.

Modification Exercises

1. Modify the program and input file to handle bitmaps of size 20 by 40. Is it
easy to do?

2. Create a modular design for this program. Make four functions – one for
reading the input file, one for printing the input file, one for compressing the
file and one for expanding the file.

Application Exercises

6.1. The number of million gallons of sewage that are disposed of each day for a
major city is measured continuously for about a month. The records saved
in a file, EX6_1.DAT, are as follows:

123, 134, 122, 128, 116, 96, 83, 144, 143, 156, 128, 138,
121, 129, 117, 96, 87, 148, 149, 151, 129, 138, 127, 126,
115, 94, 83, 142

 Write a program to calculate the frequency distribution using an interval
of 10 million gallons per day. The input specification is to use the array
sewage_amt[100] to read the number of millions of gallons from the file
EX6_1.DAT. The output specification is to display the following data on the
screen:

 332

Modification and Application Exercises for
further reinforcement and practice

00 FMIT.indd 16 24/08/2011 1:41 PM

