Engineering Circuit Analysis, Sixth Edition

W.H. Hayt, Jr., J.E. Kemmerly, and S.M. Durbin

Errata

Chapter 3: Voltage and Current Laws

10 Oct 2002 p. 60: The right-most current source of Fig. $3.71 b$ should be labelled 3.5 A .

Chapter 4: Basic Nodal and Mesh Analysis

10 Oct 2002 p. 76: In Figure 4.4, the left-most node should be labelled v_{1}, not v_{-1}.

Chapter 5: Useful Circuit Analysis Techniques

10 Oct 2002 p. 122: In Figure 5.30b, the voltage across the 1-A source should be labelled $v_{\text {test }}$.
p. 132: In Figure 5.47, the current through the $20-\Omega$ resistor should be labelled I_{1} (not i_{1}), for the sake of consistency.
p. 134: In Fig. 5.55, a DC voltage source symbol should be used for the $2-\mathrm{V}$ source. (Delete the " \sim ").
p. 139: The circuit discussed in exercise 45 is actually a common-collector transistor amplifier, not a common-emitter amplifer as stated.
p. 145: Exercise 68 should read:

The human ear can detect sound waves in the frequency range of about 20 Hz to 20 kHz . If each $8-\Omega$ resistor in Fig. 5.102 is a loudspeaker, which of the signal generators (modeled as practical voltage sources) produces the most sound? (Take "loudness" as proportional to power delivered to a speaker.)

Chapter 6: The Operational Amplifer

10 Oct 2002 p. 157: The solution to Practice 6.3 is

$$
-\mathrm{AR}_{\mathrm{i}} \mathrm{R}_{\mathrm{f}} /\left[\mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{f}}+\mathrm{R}_{1} \mathrm{R}_{\mathrm{f}}+(1+\mathrm{A}) \mathrm{R}_{1} \mathrm{R}_{\mathrm{i}}\right]
$$

p. 165: In Figure 6.28, the sinusoidal source should be labelled $2 \sin 3 t \mathrm{~V}$, not $2 \sin 3 t \mathrm{mV}$.

p. 169: Figure 6.42, corrected circuit diagram

p. 170: In exercise 38, use an LF411 instead of an LM 324.

Chapter 7: Capacitors and Inductors

10 Oct 2002 p. 177: Under Energy Storage, the upper limit of the third integral is incorrect. The correct integral expression is:

$$
C \int_{v\left(t_{0}\right)}^{v(t)} v d v
$$

p. 186: Under Energy Storage, the second integral is missing a term. The correct expression should read:

$$
L \int_{t_{0}}^{t} i \frac{d i}{d t^{\prime}} d t^{\prime}
$$

p. 199: In the solution to Practice 7.8, the second answer should have units of mV .
p. 203: In Figure 7.40, the y-axis label should be 1 mA , not 2 mA .
p. 206: In Figure 7.52, label each resistor R, each inductor L, and each capacitor C.
p. 210: Exercise 50 should read, "... obtain an expression for $i_{\text {out }}$ in terms of $i_{\text {s. }}$."

Chapter 8: Basic RL and RC Circuits

10 Oct 2002 p. 247: The second half of exercise 12 should read:
At a shutter speed of 2 s , no further intensity increase is observed. At a speed of 1 s , a more intense image is seen. At a speed of 150 ms , the image appears to be about 14 percent of the intensity obtained at the slowest camera speed. Estimate the Thévenin equivalent resistance of the circuitry connected to the receiver's power supply.
(changes in italic font)
p. 256: Exercise 61(a) and (b) should refer to Exer. 39.

Chapter 9: The RLC Circuit

10 Oct 2002 p. 296: Exercise 12 should be modified to read:
"... of Fig. 9.33, (a) what value ..."
p. 296: In Figure 9.35, the inductor should have a value of 4.444 H , not $5 / 3 \mathrm{H}$.
p. 301: In Figure 9.55, the inductor should have a value of 10 H and the capacitor should be a $2-\mathrm{F}$ capacitor. Define a current $i(t)$ flowing left through the inductor. The initial conditions are $v(0)=0$ and $i(0)=1 \mathrm{~mA}$.
Chapter 10: Sinusoidal Steady-State Analysis
10 Oct 2002 p. 326: For Practice 10.11, the second answer should read $1.25+j 2 \mathrm{mS}$, and the last answer should read $801-j 10^{6} \mathrm{pS}$.
p. 344: In Figure 10.53, the voltage source should be labelled \mathbf{V}_{S}, not $\mathbf{V}_{\mathrm{S}}(t)$.
p. 350: Exercise 74 should refer to a $j 5-\Omega$ impedance.
p. 351: Exercise 78 part (a) should read:
"(a) Show that the maximum amplitude of the voltage gain $\mathbf{V}_{\mathrm{o}} / \mathbf{V}_{\mathrm{S}}$ of the amplifer circuit is $+\mathrm{g}_{\mathrm{m}}\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}\right)$."

Chapter 11: AC Circuit Power Analysis

10 Oct 2002 p. 359: In the blue margin note, the symbol τ should be an f.
Thus, $\mathrm{T}=1 / f=2 \pi / \omega$.
p. 369: In Practice 11.7, the last answer should be 8.775 V .
p. 384: In Exercise 26, assume the source operates at 60 Hz .

Chapter 13: Magnetically Coupled Circuits

10 Oct 2002 p. 458: In Exercise 45, the speakers are 8Ω and 10Ω, not 8 W and 10 W .

Chapter 14: Complex Frequency and the Laplace Transform

10 Oct 2002 p. 491: In Exercise 36(c), the denominator of the second term is incorrect. The correct equation is:

$$
\frac{d \Delta n_{p}}{d t}=-\frac{\Delta n_{p}}{\tau}+G_{L}
$$

Chapter 15: Circuit Analysis in the s-Domain

10 Oct 2002 p. 509: The denominator of the impedance expression is incorrect. The correct expression is:

$$
\mathbf{Z}_{\mathrm{S}}=\frac{72 \mathbf{s}^{2}+252 \mathbf{s}}{18 \mathbf{s}^{3}+63 \mathbf{s}^{2}+12 \mathbf{s}+28} \Omega
$$

p. 536: For the solution to Practice 15.15, the feedback resistor of the first two stages should be $1 \mathrm{M} \Omega$, not $100 \mathrm{k} \Omega$; the feedback resistor for the last stage should be $5 \mathrm{M} \Omega$, not $50 \mathrm{k} \Omega$.
p. 539: In Exercise 13, replace "time domain expressions" with "a time domain expression"
p. 541: Exercise 24 should read, "... by first performing appropriate ..."
p. 544: In Figure 15.70, the 6-H inductor has been incorrectly represented with a resistor symbol.

Chapter 16: Frequency Response

10 Oct 2002 pp. 550-551: The term \mathbf{I}_{m} should not be bold, as it is a magnitude only.
p. 563: There are two solutions to Practice 16.5. Either 9.997 mH or $2.534 \mu \mathrm{H}$ will lead to the desired resonant frequency.
p. 596: Exercise 5: Last time we checked, the correct spelling is "parallel."
p. 601: Punction errors in Exercise 39. It should read, "... and phase plots for the transfer function $\mathbf{H}(\mathbf{s})=\mathbf{V}_{\mathrm{C}} / \mathbf{I}_{\mathrm{S}}$.
p. 603: Exercise 50, part (b) should read, "Simulate the frequency response of your circuit at maximum gain."

Chapter 17: Two-Port Networks

10 Oct 2002 p. 616: The correct answer to Practice 17.5 is $\left[\begin{array}{rl}0.8 & 0 \\ -0.2 & 0.2\end{array}\right]$.

Appendix 8: Answers to Odd-Numbered Problems

p. 751: Answer to [3] is 10.8 V .
p. 752: Answer to [49] is (a) $15 \Omega, 65 \mathrm{~V}$; (b) 70.42 W .

Answer to [63] is -13 V ("+" on top), 26.7 W.
p. 756: Answer to [75] is $1.0 e^{-0.1 t} u(t) \mathrm{V}$.
p. 757: Answer to [13] is (b) -2 A ; (e) 1.96 ms

Answer to [15] is $\mathrm{R}<160 \Omega$ using $\varepsilon_{\mathrm{R}}=88$
Answer to [19] is $\mathrm{R}=160 \Omega$ using $\varepsilon_{\mathrm{R}}=88$
p. 758: Answer to [11] is $743 \cos \left(500 t-21.8^{\circ}\right) \mathrm{mA}$.

Answer to [15] is $12.5 \cos \left(500 t-0.107^{\circ}\right) \mathrm{mA}$.
p. 759: Answer to [45] is (a) $a b$ open circuited: $10.56-j 1.92 \Omega$
(b) $a b$ short-circuited: $9.969+j 0.2462 \Omega$
p. 760: Answer to [79] is
$v_{1}(t)=3.22 \times 10^{-3} \cos \left(2 \times 10^{4} t-87^{\circ}\right)+313 \times 10^{-12} \cos \left(2 \times 10^{5} t+177^{\circ}\right) \mathrm{V}$
$v_{2}(t)=31.3 \times 10^{-9} \cos \left(2 \times 10^{4} t-177^{\circ}\right)+116 \times 10^{-12} \cos \left(2 \times 10^{5} t-93^{\circ}\right) \mathrm{V}$
p. 761: Answer to [5] is (b) $189.8 \angle 34.95^{\circ} \mathrm{V}$.
p. 762: Answer to [33] is -186 W . (Need to swap the potential leads.)
p. 764: The angle in [5] part (b) should be 56.31°.
[7], part (b) the units should be mA.
p. 765: The angle in [13] should be -99.3°.

