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This chapter was devoted to Newton’s second law and its applica-
tion to the analysis of the motion of particles.

Denoting by m the mass of a particle, by �F the sum, or
resultant, of the forces acting on the particle, and by a the accel-
eration of the particle relative to a newtonian frame of reference
[Sec. 12.2], we wrote

�F � ma (12.2)

Introducing the linear momentum of a particle, L � mv [Sec.
12.3], we saw that Newton’s second law can also be written in the
form

�F � L̇ (12.5)

which expresses that the resultant of the forces acting on a parti-
cle is equal to the rate of change of the linear momentum of the
particle.

Equation (12.2) holds only if a consistent system of units is
used. With SI units, the forces should be expressed in newtons, the
masses in kilograms, and the accelerations in m/s2; with U.S. cus-
tomary units, the forces should be expressed in pounds, the masses
in lb � s2/ft (also referred to as slugs), and the accelerations in ft/s2

[Sec. 12.4].

To solve a problem involving the motion of a particle, Eq. (12.2)
should be replaced by equations containing scalar quantities [Sec.
12.5]. Using rectangular components of F and a, we wrote

�Fx � max �Fy � may �Fz � maz (12.8)

Using tangential and normal components, we had

�Ft � m �Fn � m (12.9�)

We also noted [Sec. 12.6] that the equations of motion of a par-
ticle can be replaced by equations similar to the equilibrium equa-
tions used in statics if a vector 	ma of magnitude ma but of sense
opposite to that of the acceleration is added to the forces applied
to the particle; the particle is then said to be in dynamic equilib-
rium. For the sake of uniformity, however, all the Sample Problems
were solved by using the equations of motion, first with rectangular
components [Sample Probs. 12.1 through 12.4], then with tangen-
tial and normal components [Sample Probs. 12.5 and 12.6].
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In the second part of the chapter, we defined the angular
momentum HO of a particle about a point O as the moment about
O of the linear momentum mv of that particle [Sec. 12.7]. We wrote

HO � r � mv (12.12)

and noted that HO is a vector perpendicular to the plane contain-
ing r and mv (Fig. 12.24) and of magnitude

HO � rmv sin � (12.13)

Resolving the vectors r and mv into rectangular components,
we expressed the angular momentum HO in the determinant form

HO � � � (12.14)

In the case of a particle moving in the xy plane, we have z � vz � 0.
The angular momentum is perpendicular to the xy plane and is
completely defined by its magnitude. We wrote

HO � Hz � m(xvy 	 yvx) (12.16)

Computing the rate of change ḢO of the angular momentum
HO, and applying Newton’s second law, we wrote the equation

�MO � ḢO (12.19)

which states that the sum of the moments about O of the forces act-
ing on a particle is equal to the rate of change of the angular mo-
mentum of the particle about O.

In many problems involving the plane motion of a particle, it
is found convenient to use radial and transverse components [Sec.
12.8, Sample Prob. 12.7] and to write the equations

�Fr � m(r̈ 	 r�̇2) (12.21)
�F� � m(r�̈ � 2ṙ�̇) (12.22)

When the only force acting on a particle P is a force F directed
toward or away from a fixed point O, the particle is said to be mov-
ing under a central force [Sec. 12.9]. Since �MO � 0 at any given
instant, it follows from Eq. (12.19) that ḢO � 0 for all values of t
and, thus, that

HO � constant (12.23)

We concluded that the angular momentum of a particle moving
under a central force is constant, both in magnitude and direction,
and that the particle moves in a plane perpendicular to the 
vector HO.
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Newton’s law of universal gravitation

Orbital motion

Fig. 12.25

Fig. 12.26

Fig. 12.27

Recalling Eq. (12.13), we wrote the relation

rmv sin � � r0mv0 sin �0 (12.25)

for the motion of any particle under a central force (Fig. 12.25).
Using polar coordinates and recalling Eq. (12.18), we also had

r2 ˙� � h (12.27)

where h is a constant representing the angular momentum per unit
mass, HO�m, of the particle. We observed (Fig. 12.26) that the in-
finitesimal area dA swept by the radius vector OP as it rotates
through d� is equal to �

1
2� r2 d� and, thus, that the left-hand mem-

ber of Eq. (12.27) represents twice the areal velocity dA/dt of the
particle. Therefore, the areal velocity of a particle moving under a
central force is constant.

An important application of the motion under a central force
is provided by the orbital motion of bodies under gravitational at-
traction [Sec. 12.10]. Acording to Newton’s law of universal grav-
itation, two particles at a distance r from each other and of masses
M and m, respectively, attract each other with equal and opposite
forces F and 	F directed along the line joining the particles
(Fig. 12.27). The common magnitude F of the two forces is

F � G (12.28)

where G is the constant of gravitation. In the case of a body of
mass m subjected to the gravitational attraction of the earth, the
product GM, where M is the mass of the earth, can be expressed as

GM � gR2 (12.30)

where g � 9.81 m/s2 � 32.2 ft/s2 and R is the radius of the earth.

It was shown in Sec. 12.11 that a particle moving under a cen-
tral force describes a trajectory defined by the differential equa-
tion

� u � (12.37)
F
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where F � 0 corresponds to an attractive force and u � 1�r. In the
case of a particle moving under a force of gravitational attraction
[Sec. 12.12], we substituted for F the expression given in Eq.
(12.28). Measuring � from the axis OA joining the focus O to the
point A of the trajectory closest to O (Fig. 12.28), we found that
the solution to Eq. (12.37) was

� u � � C cos � (12.39)

This is the equation of a conic of eccentricity � � Ch2�GM. The
conic is an ellipse if � � 1, a parabola if � � 1, and a hyperbola if
� � 1. The constants C and h can be determined from the initial
conditions; if the particle is projected from point A (� � 0, r � r0)
with an initial velocity v0 perpendicular to OA, we have h � r0v0
[Sample Prob. 12.9].

It was also shown that the values of the initial velocity corre-
spondig, respectively, to a parabolic and a circular trajectory were

vesc � �� (12.43)

vcirc � �� (12.44)

and that the first of these values, called the escape velocity, is the
smallest value of v0 for which the particle will not return to its start-
ing point.

The periodic time 
 of a planet or satellite was defined as the
time required by that body to describe its orbit. It was shown that


 � (12.45)

where h � r0v0 and where a and b represent the semimajor and
semiminor axes of the orbit. It was further shown that these semi-
axes are respectively equal to the arithmetic and geometric means
of the maximum and minimum values of the radius vector r.

The last section of the chapter [Sec. 12.13] presented Kepler’s
laws of planetary motion and showed that these empirical laws, ob-
tained from early astronomical observations, confirm Newton’s laws
of motion as well as his law of gravitation.
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