Computer Problems

12.C1 Block B of weight 18 lb is initially at rest as shown on the uper surface of a $45-\mathrm{lb}$ wedge A which is supported by a horizontal surface. A 4-lb block C is connected to block B by a cord, which passes over a pulley of negligible mass. Using computational software and denoting by μ the coefficient of friction at all surfaces, calculate the initial acceleration of the wedge and the initial acceleration of block B relative to the wedge for values of $\mu \geq 0$. Use 0.01 iincrements for μ until the wedge does not move and then use 0.1 increments until no motion occurs.

Fig. P4.C1
12.C2 A small $0.50-\mathrm{kg}$ block is at rest at the top of a cylindrical surface. The block is given an initial velocity \mathbf{v}_{0} to the right of magnitude $3 \mathrm{~m} / \mathrm{s}$, which causes it to slide on the cylindrical surface. Using computational software calculate and plot the values of θ at which the block leaves the surface for values of μ_{k}, the coefficient of kinetic friction between the block and the surface, from 0 to 0.4 usiing 0.05 increments.

Fig. P4.C2

Fig. P4.C3
12.C3 A block of mass m is attached to a spring of constant k. The block is released from rest when the spring is in a horizontal and undeformed position. Knowing that $r_{0}=4 \mathrm{ft}$, use computational software to determine (a) for $k / m=15 \mathrm{~s}^{-2}, 20 \mathrm{~s}^{-2}$, and $25 \mathrm{~s}^{-2}$, the length of the spring and the magnitude and direction of the velocity of the block as the block passes directly under the point of suspension of the spring, (b) the value of k / m for which that velocity is horizontal.
12.C4 An airplane has a weight of $60,000 \mathrm{lb}$ and its engines develop a constant thrust of $12,500 \mathrm{lb}$ during take-off. The drag \mathbf{D} exerted on the airplane has a magnitude $D=0.060 v^{2}$, where D is expressed in lb and v is the speed in ft / s. The airplane starts from rest at the end of the runway and becomes airborne at a speed of $250 \mathrm{ft} / \mathrm{s}$. Determine and plot the position and speed of the airplane as functions of time and the speed as a function of position as the airplane moves down the runway.
12.C5 Two wires $A C$ and $B C$ are tied at point C to a small sphere which revolves at a constant speed v in the horizontal circle shown. Calculate and plot the tensions in the wires as functions of v. Determine the range of values of v for which both wires reman taut.

Fig. P4.C5
12.C6 A 10-lb bag is gently pushed off the top of a wall at point A and swings in a vertical plane at the end of a rope of length $l=5 \mathrm{ft}$. Calculate and plot the speed of the bag and the magnitude of the tension in the rope as functions of the angle θ from 0 to 90°.

Fig. P4.C6
12.C7 The two-dimensional motion of particle β is defined by the relations $r=t^{3}-2 t^{2}$ and $\theta=t^{3}-4 t$, where r is expressed in mm, t in seconds, and θ in radians. Knowing that the particle has a mass of 0.25 kg and moves in a horizontal plane, calculate and plot the radial and transverse components and the magnitude of the force actiing on the particle as functions of t from 0 to 1.5 s .

Fig. P4.C7

