Computer Problems

4.C1 A slender $\operatorname{rod} A B$ of weight W is attached to blocks at A and B which can move freely in the guides shown. The constant of the spring is k and the spring is unstretched when the rod is horizontal. Neglecting the weight of the blocks, derive an equation in terms of $(\theta, W, l$, and k which must be satisfied when the rod is in equilibrium. Knowing that $W=10 \mathrm{lb}$ and $l=40 \mathrm{in}$., (a) calculate and plot the value of the spring constant k as a function of the angle θ for $15^{\circ} \leq \theta \leq 40^{\circ}$, (b) determine the two values of the angle θ corresponding to equilibrium when $k=0.7 \mathrm{lb} / \mathrm{in}$.

Fig. P4.C1
4.C2 The position of the L-shaped rod shown is controlled by a cable attached at point B. Knowing that the rod supports a load of magnitude $P=$ 200 N , use computational software to calculate and plot the tension T in the cable as a function of θ for values of θ from from 0 to 120°. Determine the maximum tension $T_{\max }$ and the corresponding value of θ.
4.C3 The position of the $20-\mathrm{lb} \operatorname{rod} A B$ is controlled by the block shown, which is slowly moved to the left by the force \mathbf{P}. Neglecting the effect of friction, use computational software to calculate and plot the magnitude P of the force as a function of x for values of x decreasing from 30 in. to 0 . Determine the maximum value of P and the corresponding value of x.

Fig. P4.C2

Fig. P4.C3

Fig. P4.C4

Fig. P4.C5
*4.C4 Member $A B C$ is supported by a pin and bracket at C and by an inextensible cable of length 3.5 m that is attached at A and B and passes over a frictionless pulley at D. Neglecting the mass of $A B C$ and the radius of the pulley, (a) plot the tension in the cable as a function of a for $0 \leq a \leq 2.4 \mathrm{~m}$, (b) determine the largest value of a for which equilibrium can be maintained.
4.C5 and 4.C6 The constant of spring $A B$ is k, and the spring is unstretched when $\theta=0$. Knowing that $R=200 \mathrm{~mm}, a=400 \mathrm{~mm}$, and $k=$ $1 \mathrm{kN} / \mathrm{m}$, use computational software to calculate and plot the mass m corresponding to equilibrium as a function of θ for values of θ from 0 to 90°. Determine the value of θ corresponding to equilibrium when $m=2 \mathrm{~kg}$.

Fig. P4.C6
4.C7 An $8 \times 10-\mathrm{in}$. panel of weight $W=40 \mathrm{lb}$ is supported by hinges along edge $A B$. Cable $C D E$ is attached to the panel at point C, passes over a small pulley at D, and supports a cylinder of weight W. Neglecting the effect of friction, use computational software to calculate and plot the weight of the cylinder corresponding to equilibrium as a function of θ for values of θ from 0 to 90°. Determine the value of θ corresponding to equilibrium when $W=20 \mathrm{lb}$.

Fig. P4.C7
4.C8 A uniform circular plate of radius 300 mm and mass 26 kg is supported by three vertical wires that are equally spaced around its edge. A small $3-\mathrm{kg}$ block E is placed on the plate at D and is then slowly moved along diameter $C D$ until it reaches C. (a) Plot the tension in wires A and C as functions of a, where a is the distance of the block from D. (b) Determine the value of a for which the tension in wires A and C is minimum.

Fig. P4.C8
4.C9 The derrick shown supports a 4000-lb crate. It is held by a ball-and-socket joint at point A and by two cables attached at points D and E. Knowing that the derrick lies in a vertical plane forming an angle ϕ with the $x y$ plane, use computational software to calculate and plot the tension in each cable as a function of ϕ for values of ϕ from 0 to 40°. Determine the value of ϕ for which the tension in cable $B E$ is maximum.
4.C10 The $140-\mathrm{lb}$ uniform steel plate $A B C D$ is welded to shaft $E F$ and is maintained in the position shown by the couple \mathbf{M}. Knowing that collars prevent the shaft from sliding in the bearings and that the shaft lies in the $y z$ plane, plot the magnitude M of the couple as a function of θ for $0 \leq \theta \leq 90^{\circ}$.

Fig. P4.C9

Fig. P4.C10

