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Chapter Three

Engineering
Geometry
The senses delight in what is truly
proportional.

Thomas Aquinas

Objectives and Overview
Graphics is used to represent complex
objects and structures that are created from
simple geometric elements, such as lines,
circles, and planes. Current 3-D CAD pro-
grams use these simple geometric forms to
create more complex ones, through such
processes as extrusion, sweeping, and
Boolean solid modeling operations. To fully
exploit the use of CAD, you must under-
stand geometry and be able to construct 2-D
and 3-D geometric forms.

This chapter introduces the geometric
forms useful in engineering design, from
the simple to the complex. The chapter
defines four engineering geometry cate-
gories, from simple 2-D elements to com-
plex 3-D forms. The geometric elements
and forms that are the basic components
of engineering geometry are defined and
illustrated, along with the application of
these elements to engineering design. In
addition, geometric conditions are defined
and illustrated, and geometric construc-
tion techniques that are useful for engi-
neering design are described.

The chapter is divided into two major
sections: geometric construction and
engineering geometry. Many of the geo-
metric construction techniques described
apply only to hand tools, because many
CAD systems have commands that per-
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Engineering Geometry 135

form some of the steps automatically. However, the
construction techniques are still valuable because the
terminology and the descriptions of the various geomet-
ric forms are applicable to CAD. CAD systems become
even more powerful in the hands of someone who
understands 2-D and 3-D geometric forms.

After completing this chapter, you will be able to:

1. Describe the importance of engineering geometry in
the design process.

2. Describe coordinate geometry and coordinate systems
and apply them to CAD.

3. Explain the right-hand rule.

4. List the major categories of geometric entities.

5. Explain and construct the geometric conditions that
occur between lines.

6. Explain and construct tangent conditions between
lines and curves.

7. Explain and construct conic sections, roulettes, dou-
ble-curved lines, and freeform curves.

8. List and describe surface geometric forms.

9. Describe engineering applications of geometry.

10. Describe two types of 3-D modeling.

3.1 Engineering Geometry
Geometry provides the building blocks for the engineer-
ing design process. Engineering geometry is the basic
geometric elements and forms used in engineering design.

In this chapter, traditional and CAD-based geometric con-
struction techniques are introduced, along with the primitive
geometric forms that serve as the building blocks for more
complicated geometric shapes commonly found in engineer-
ing design. Some of the more advanced surface geometry
topics covered in this chapter introduce geometric forms that
can be created by 3-D surface modeling CAD programs.

3.2 Shape Description
Engineering and technical graphics are concerned with
the descriptions of shape, size, and operation of engi-
neered products. The shape description of an object
relates to the positions of its component geometric ele-
ments in space. To be able to describe the shape of an
object, you must understand all of the geometric forms,
as well as how they are graphically produced.

Shape description is based on the primitive forms,
points, lines, and planes, which are combined to create
more complex forms, such as that shown in Figure 3.1. 

Figure 3.1

Shape description
Complex engineering geometry is found in many engineered products, structures, and systems.
(© Ron Sherman: Stone.)
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you can locate any point in 2-D space by assigning a
unique set of numbers to that point. The numbers assigned
to each point are called coordinates, where the first num-
ber is the X coordinate and the second number is the Y
coordinate. For example, the coordinates 3,5 would locate
a point in the upper right quadrant of the 2-D coordinate
system, as shown in Figure 3.2. Coordinates of –3,5
would locate a point in the upper left quadrant; coordi-
nates of –3,–5 would locate a point in the lower left quad-
rant; and coordinates of 3,–5 would locate a point in the
lower right quadrant. By connecting these points with
lines, you create a rectangle in fixed coordinate space
(Figure 3.3).

In a 3-D coordinate system, the origin is established at
the point where three mutually perpendicular axes (X, Y,
and Z) meet (Figure 3.4). The origin is assigned the coor-
dinate values of 0,0,0. By convention, values to the right
of the origin are positive, and those to the left are nega-
tive; values above the origin are positive, and those below
are negative; and values in front of the origin are positive,
and those behind are negative.

Using this convention, you can assign a unique
triplet of ordered numbers to any point in 3-D space.
The first number represents the X distance, the second
number the Y distance, and the third number the Z dis-

A shape description is developed through orthographic,
pictorial, or other projection techniques.

3.3 Coordinate Space
In order to locate points, lines, planes, or other geometric
forms, their positions must first be referenced to some
known position, called a reference point or origin of
measurement. The Cartesian coordinate system, com-
monly used in mathematics and graphics, locates the posi-
tions of geometric forms in 2-D and 3-D space. This sys-
tem was first introduced in 1637 by the French
mathematician René Descartes (1596–1650). The coordi-
nate geometry based on this system theorizes that, for
every point in space, a set of real numbers can be
assigned, and for each set of real numbers, there is a
unique point in space.

A 2-D coordinate system establishes an origin at the
intersection of two mutually perpendicular axes, labeled
X (horizontal) and Y (vertical) (Figure 3.2). The origin is
assigned the coordinate values of 0,0. Values to the right
of the origin are considered positive, and those to the left
are negative. Similarly, values above the origin are posi-
tive, and those below are negative. Using this convention,
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2-D Cartesian coordinate system
The 2-D Cartesian coordinate system was developed by René
Descartes to locate the positions of geometric forms in space.
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Locating points
A rectangle is created by using coordinate values for each corner
and then drawing the connecting lines.
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Engineering Geometry 137

tance. Figure 3.5 shows a rectangular prism located in
3-D coordinate space, with the following values for the
corners. Notice in Figure 3.5 the coordinate triplets in
parentheses given for each of the corners of the rectan-
gular prism.

This coordinate system is used in multiview drawings
and 3-D modeling, using both traditional tools and CAD.
Figure 3.6 is a multiview drawing of an object, with coor-
dinate axes displayed in each viewport. The front view-
port shows the X and Y axes, with Z as a point; the top
viewport shows the X and Z axes, with Y as a point; and
the profile viewport shows the Y and Z axes, with X as a
point. By “placing” the lower left-front corner of the
block on the origin, you can then locate all other points on
the block by their coordinates. For example, point A in the
figure is located at coordinates 3,3,–1.

CAD systems provide a method for displaying the cur-
sor’s current position in coordinate space. Normally, there
is some type of toggle switch or command that turns on
the coordinate tracking, which is then displayed at the top
or bottom of the screen (Figure 3.7). To create 3-D mod-
els, most CAD systems use 2-D input devices, such as
mice and digitizers, and then require keyboard entry of the
Z value to define the third dimension.

Practice Exercise 3.1
Take three sheets of square grid paper and lay out  X–Y, Y–Z,
and X–Z axes on each one. Label the axes. Using the coordi-
nates given in Figure 3.5, map the points on the grid paper,
minus the coordinate not represented. Photocopy all three
sheets. Using the photocopy, cut out and glue together the
three rectangles defined by the points, in their appropriate
orientations. For the missing sides of the solid, make a sec-
ond photocopy of your sheets, cut them out and glue them in
place. They represent exact duplicates of the opposite faces
in terms of size and shape. What is different about them? Do
the coordinates on the photocopies correctly reflect where
the second set of faces is in space?

3.3.1 Right-Hand Rule

The right-hand rule is used to determine the positive
direction of the axes. To visualize the right-hand rule,
make a fist with your right hand, with your thumb point-
ing outward (Figure 3.8A). The direction your thumb is
pointing indicates the positive direction on the X axis.
Straighten your index finger so that it is pointing straight
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3-D coordinate system
The 3-D coordinate axes consist of three mutually perpendicular
axes. The red numbers in parentheses are example coordinate
values at the marked locations.
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Locating points
A rectangular prism is created using the 3-D coordinate system
by establishing coordinate values for each corner.
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Figure 3.7

Display of coordinate position of cursor on a CAD screen
The coordinate position of the cursor is located in the bottom left corner of the screen display.
(Courtesy of Gary Bertoline.)
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Display of coordinate axes in a multiview CAD drawing
Only two of the three coordinates can be seen in each view.
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Engineering Geometry 139

up, at 90 degrees to your thumb (Figure 3.8B). The direc-
tion your index finger is pointing indicates the positive
direction on the Y axis. Straighten your middle finger so
that it is pointing forward, at 90 degrees to your index fin-
ger (Figure 3.8C). The direction your middle finger is
pointing indicates the positive direction of the Z axis.

The right-hand rule is also used to specify the direction
of positive rotation about each axis. Imagine that the fin-
gers of your right hand are made into a fist and are
wrapped around one of the axes, with the thumb pointing
in the positive direction of that axis. The direction that
your fingers curl to make the fist identifies the direction of

+ Z

+ X

+ Y

(C)

+ X

+ Y

(B)

+ X

(A)

(D)

Z X

Y

Figure 3.8

Right-hand rule for axes directions
The right-hand rule defines the X, Y, and Z axes, as well as the positive and negative directions of rotation on each axis.
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positive rotation for the axis (Figure 3.8D). This tech-
nique applies to all three axes.

The right-hand rule is used in both traditional drawing
and CAD.

3.3.2 Polar Coordinates

Polar coordinates are used to locate points in the X–Y
plane. Polar coordinates specify a distance and an angle
from the origin (0,0). Figure 3.9 shows a line in the X–Y
plane, 4.5 units long and at an angle of 30 degrees from
the X axis. Polar coordinates are commonly used by CAD
systems to locate points.

3.3.3 Cylindrical Coordinates

Cylindrical coordinates involve one angle and two dis-
tances. Cylindrical coordinates specify a distance from the
origin, an angle from the X axis in the X–Y plane, and a dis-
tance in the Z direction. To illustrate, in Figure 3.10, point A
is 7 units in the Z direction, and is 4.5 units from the origin
as measured on a line that is at 60 degrees from the X axis in
the X–Y plane. Because of the way it is located, point A is
on the surface of a cylinder that has a radius of 4.5 units and
a length of 7 units; hence the name cylindrical coordinates.

Cylindrical coordinates are used in designing circular
shapes and in geographic applications. To change cylin-

drical coordinates to Cartesian coordinates, use the fol-
lowing equations: 

x = r cos θ
y = r sin θ
z = z

For example, the Cartesian coordinates for point A in
Figure 3.10 are 2.25, 4.90, 7, determined as follows: use
the equations shown above and substitute the values r =
4.5 and angle theta = 60 degrees:

x = 4.5 cos 60 = 2.25
y = 4.5 sin 60 = 3.90
z = 7

3.3.4 Spherical Coordinates

Spherical coordinates are used to locate points on a
spherical surface by specifying two angles and one dis-
tance (Figure 3.11). Spherical coordinates specify a dis-
tance from the origin on a line that is at an angle from the
X axis in the X–Y plane, and then an angle away from the
X–Y plane. In Figure 3.11, the distance in the X–Y plane
is 3 (which defines the radius of the sphere), the angle in
the X–Y plane is 20 degrees, locating a point from which
an angle of 60 degrees is drawn away from the X–Y plane
along the surface of the sphere.
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Figure 3.9

Polar coordinates
Polar coordinates use a distance in the X-Y plane and an angle
from the X axis to locate a point.
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Figure 3.10

Cylindrical coordinates
Cylindrical coordinates locate a point on the surface of a cylin-
der by specifying a distance and an angle in the X–Y plane, and
a distance in the Z direction.
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Engineering Geometry 141

3.3.5 Absolute and Relative Coordinates

Absolute coordinates are always referenced to the origin
(0,0,0). In Figure 3.12, the rectangle is defined by corners
that have absolute coordinate values of:

0,0,0
4,0,0
4,2,0
0,2,0

Relative coordinates are always referenced to a pre-
viously defined location and are sometimes referred to
as delta coordinates, meaning changed coordinates.
Figure 3.13 shows the same rectangle as in Figure 3.12,
but constructed using relative coordinates starting with
point A, then locating points B, C, and D. Point A has
values 4,0,0; B is referenced from A and has relative val-
ues 0,2,0; C is referenced from B and has relative values
–4,0,0; and D is referenced from C and has relative val-
ues 0,–2,0.

Practice Exercise 3.2
Using the coordinates given in the text, build a wireframe
model out of wire. Create three coordinate planes (X–Y, Y–Z,
and X–Z) on square grid paper. Glue them onto a cardboard
backing and tape them together to form a grid box with the
grid facing inward. Place the wireframe in the box so that the
corners correspond to the correct absolute coordinates.
Count off the number of grids to get from one corner of the
object to another. Use a corner other than 0,0,0 as a refer-
ence point and move the wireframe model to a different loca-
tion in the grid box. Do the absolute coordinates of the cor-
ners change? Count the number of grids from one corner to
another. Do the delta coordinates change?

Do the same exercise with 3-D models on the computer.
Use either coordinate readouts in the status area, or 3-D grid
planes to help visualize the results.

3

20°
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Y

Z X

Figure 3.11

Spherical coordinates
Spherical coordinates locate a point on the surface of a sphere
by specifying an angle in one plane, an angle in another plane,
and one length.
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Relative coordinates
Relative coordinate values are referenced to the previous speci-
fied point.
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Figure 3.12

Absolute coordinates
Absolute coordinate values are referenced to the fixed origin.
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3.3.6 World and Local Coordinate Systems

CAD systems normally use two types of coordinate
systems: world, and user or local systems. Both of
these are based on Cartesian coordinates. The world
coordinate system is the stationary or reference sys-
tem where the geometry is defined and stored. The
world coordinate system uses a set of three numbers
(x,y,z) located on three mutually perpendicular axes
and measured from the origin (0,0,0) (Figure 3.14).
The local coordinate system is a moving system that
can be positioned anywhere in 3-D space by the user,
to assist in the construction of geometry. In Figure
3.14, axes X and Y of the local coordinate system are
aligned with the inclined plane, resulting in local
coordinate values that are different from the world
coordinate values. Locating a point on the inclined
surface will be easier using the local coordinate sys-
tem because the X–Y plane of the local coordinate
system is parallel to the inclined surface. For exam-
ple, the point A has world coordinates of 1,4,–3 and
local coordinates of 3,3.5,0.

Practice Exercise 3.3
Create a workplane of either stiffened grid paper or clear
plastic, with two axes on it. The third axis can be represented
sticking out of the plane, if desired. Place the plane on vari-
ous surfaces of objects (including inclined and oblique sur-
faces). Calculate the local coordinate locations of various fea-
tures on the object. Compare them to the world coordinates
of the features, using the grid box from the previous exercise
as the world coordinate reference.

Do the same exercise using 3-D models on a computer.
Use locally defined workplanes, and compare the local coor-
dinate readouts to world coordinate values. The exercise can
be done with 2-D CAD systems and locally (user) defined
coordinate systems.

3.4 Geometric Elements
Different systems can be used to categorize geometric ele-
ments. In this text, geometric elements are categorized as
points, lines, surfaces, or solids. Lines, surfaces, and
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World and local coordinates
This object in 3-D coordinate space shows the difference between the world coordinate system and a local coordinate system. World
and local coordinate systems are commonly used with CAD to construct 3-D objects. Point A has different coordinate values, depend-
ing on whether the local or world coordinate system is used.
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Historical Highlight
Gaspard Monge

Gaspard Monge, the man known as “the father of descriptive
geometry,” was an incredibly talented man. He was a mathe-
matician, a scientist, and an educator working in physics,
chemistry, analytical geometry, and, of course, descriptive
geometry.

Monge was born the son of a poor merchant in eighteenth
century France. His father managed to help him get a suffi-
cient education and Monge’s talent took him the rest of the
way. More specifically, while he was a student at Mezeres, his
unique solution to a problem involving a fortress design got
him promoted from assistant to a full professor. A couple
years later he was made a professor of mathematics and later
took over the physics department.

Unfortunately, Monge was not permitted to make his
unique solution publicly known; it was deemed a military
secret. He continued to work on the principles he had used,
and expanded and revised them so that they could be used
to help solve any technical graphics problem. Then, in 1794,
Monge helped to found the first modern engineering school,
Ecole Polytechnique, and was finally able to teach the princi-
ples of descriptive geometry. It was during the next year that
he published his book Geometrie Descriptive. His work would
change technical drawings from what were simple pictures
into actual plans or engineering drawings.

Monge received many awards and honors in his lifetime,
but they were all taken away when Louis XVIII came to power.
Monge had been very loyal to Napoléon Bonaparte, and when
Napoléon lost power Monge’s career was ruined. He died in
disgrace in 1818. There is a positive note, however. Even after
his death, Monge still had students and followers who con-
tinued his work, overseeing further editions of Geometrie
Descriptive.

solids also have many subcategories. Figure 3.15 lists
each category and many of the geometric elements in each
category. The remainder of this chapter will define, illus-
trate, construct, and apply many of the geometric ele-
ments listed in Figure 3.15.

3.5 Points, Lines, Circles, and Arcs
Points, lines, circles, and arcs are the basic 2-D geometric
primitives, or generators, from which other, more com-
plex geometric forms can be derived or mathematically
produced. For example, by taking a straight line and mov-
ing it in a certain way through a circular path, you can cre-
ate a cylinder. This section defines, illustrates, and
describes how to create points, lines, circles, and arcs.

3.5.1 Points

A point is a theoretical location that has neither width,
height, nor depth. Points describe an exact location in
space. Normally, a point is represented in technical draw-

ings as a small cross made of dashes that are approxi-
mately 1⁄8′′ long (Figure 3.16A and D). With CAD, it is
possible to extrude (i.e., string out) a point to create a line,
or to extrude several points to create more complicated
forms (Figure 3.16B). A point is found at the intersection
of two lines or at the end of a finite line. In computer
graphics, it is common to use the word node to mean a
point (Figures 3.16C, E, F, and G). For example, the inter-
section of geometric entities, and specific locations along
arcs, circles, and splines, are called nodes.

Analysis of a problem may indicate that a certain
unknown point must be located at a fixed distance from
some given point, line, or arc. The location of this unknown
point is called a locus. A locus represents all possible posi-
tions of a point. The locus of a point may be drawn as a line,
circle, or arc. For example, the center of each circle shown
in Figure 3.16H forms a locus of centers.

Nodes are very important when constructing geometric
forms with CAD. CAD systems normally allow the user
to locate exactly such important geometric elements as
endpoints, centers, and intersections. These nodes can be
used to construct geometric forms more accurately. For

Source: © Corbis.
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CLASSIFICATION OF GEOMETRIC ELEMENTS
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Figure 3.15

Classification of geometric elements
Geometric elements are divided into four main categories: points, lines, surfaces, and solids. Each category contains subcategories in which most geometric elements are found.
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Engineering Geometry 145

example, a line can be accurately drawn from the mid-
point of an existing line, because the CAD system stores
the exact location as a node.

3.5.2 Lines

A line is a geometric primitive that has length and direc-
tion, but not thickness. A line may be straight, curved,
or a combination of these. As with points, it is possible
to create more complex geometric forms from lines by
using CAD extrusion or sweeping operations, as shown
in Figure 3.17A. Lines also have important relation-
ships or conditions, such as parallel, intersecting, and
tangent.

Straight Lines A straight line is generated by a point
moving in a constant direction (Figure 3.17B). Straight
lines can be either finite or infinite in length. A straight
finite line is a line of specific length (Figure 3.17C). A
straight infinite line is a line of nonspecific length (Fig-
ure 3.17D).

A ray is a straight infinite line that extends into infin-
ity from a specified point (Figure 3.17E). Ray is a com-
mon term used in computer graphics to describe the path
of a light ray, and is important when a scene is being ren-
dered.

The relationship of one line to another results in a con-
dition, such as parallel or perpendicular. A parallel line
condition occurs when two or more lines on a plane are a
constant distance apart (Figure 3.18A). A nonparallel line
condition occurs when two or more lines on one or more
planes are spaced unevenly apart (Figure 3.18B). A per-
pendicular line condition, sometimes called a normal,
occurs when two or more lines on a plane intersect each
other at right angles (90 degrees) (Figure 3.18C). An
intersecting line condition occurs when two or more lines
cross each other at a common point (Figure 3.18D). A
tangent condition exists when a straight line is in contact
with a curve at a single point (Figure 3.18E).

In technical drawing, lines are used to represent the
intersections of nonparallel planes, and the intersections
are called edges (Figure 3.18F).

(A)  Point

Approximately
1/8" long

(B)  Extruded to
      form a line

(C)  Point node at the
              tangency of 2 curves

C

Point node at the
intersection of 2 lines

(G)

G

E

F

E

1

2

Point node at the
midpoint of a line

(F)

Point nodes at the
end of a line

(E)

D

(D) Point at the
                center of a circle 

Locus of
centers

(H) Locus of the centers
of the circles

Figure 3.16

Examples and representation of points
A point is used to mark the locations of centers and loci, and the intersections, ends, and midpoints of entities.
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Practice Exercise 3.4
Create a line in 3-D space, either with a wire or on a com-
puter. Hold the line fixed along any primary axis and view it
from the directions of the three primary axes. In which views
does it look like a line? In which views does it look its full
length? In which views does it look like a point? Move the line
so that it does not align with any of the primary axes. Repeat
the viewing/analyzing process and make multiview sketches
of the line.

Curved Lines A curved line is the path generated by a
point moving in a constantly changing direction, or is the

line of intersection between a 3-D curved surface and a
plane (Figure 3.19). Curved lines are classed as single-
curved or double-curved. On a single-curved line, all
points of the line are in a plane. Examples of single-
curved lines are a circle, ellipse, parabola, hyperbola, spi-
ral, spline, involute, and cycloid. On a double-curved
line, no four consecutive points are in the same plane.
Examples of double-curved lines are the cylindrical
helix, the conical helix, and the general form created at
the line of intersection between two curved surfaces.

Practice Exercise 3.5
Create a single-curved line in 3-D space, either with a wire
or on a computer. Align the line along a primary axis and
view it along the three primary axes. In which views does it
look like a straight line? a curved line? In which views does
it look its full length? Move the line so that it does not align

146 CHAPTER 3

Infinite line(D) Ray(E)

(B) Point moving in a
constant direction

Results in a
straight line

Start

End

(A)

Path of sweep

Line

Result = Ruled

(C) Finite line

Figure 3.17

Examples and representation of lines
Lines can be used to construct other geometric forms, such as a
ruled surface. Lines are either finite or infinite, and are called
rays in computer graphics. 

Figure 3.18

Line relationships
The relationship of one line to another results in a condition.

(A) Parallel Line
Condition

(B) Nonparallel Line
Condition

(C) Perpendicular 
Line Condition

(D) Intersecting Lines (E) Tangent Condition

(F) Line at the Intersection of Two Planes (Edge)
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with any of the primary axes. Repeat the viewing/analyzing
process. Can you lay a plane up against the curved line?
Try it.

Repeat the above exercise with a double-curved line.

A regular curve is a constant-radius arc or circle gen-
erated around a single center point. The line of intersec-
tion between a circular cylinder or sphere and a plane per-
pendicular to the axis is also a regular curve.

Irregular curves, such as parabolas, hyperbolas, and
splines, are defined and methods for their construction are
described later in this chapter.

3.5.3 Tangencies

In planar geometry, a tangent condition exists when a
straight line is in contact with a curve at a single point;
that is, a line is tangent to a circle if it touches the circle at
one and only one point. At the exact point of tangency, a
radius makes a right angle to the tangent line. In Figure
3.20A, the tangent point between the line and the circle is
point C.

Two curves are tangent to each other if they touch in
one and only one place. When two arcs or circles are
tangent, a line drawn to connect the centers of the two
arcs or circles locates the point of tangency. In Figure
3.20B, the tangent point between the two circles is
located at point F.

In 3-D geometry, a tangent condition exists when a
plane touches but does not intersect another surface at one
or more consecutive points (Figure 3.21). Another tangent
condition exists where there is a smooth transition
between two geometric entities (Figure 3.22A). However,
a corner between two geometric entities indicates a non-
tangent condition (Figure 3.22B). A line is tangent to a
surface if the line touches the surface at a single point
(Figure 3.23).

Center
point

Radius

CircleArc

Center
point

Radius

Curved line formed at the
intersection between the
cylinder and the plane 

Figure 3.19

Curved lines
Regular curves are bent lines of constant radius. Regular curves include arcs, circles, and curved lines of intersection on cylinders.

(A)

A

C

B

D

(B)

E

F

G

Figure 3.20

Planar tangents
Planar tangent conditions exist when two geometric forms meet
at a single point and do not intersect.
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Figure 3.21

Tangent plane
Plane RVS is tangent to the cone at line VT.

Tangent
Line

Tangent
Line

Tangent
Line

Tangent
Line

Tangent
Line

Tangent
Line

Figure 3.23

Tangent lines
The lines of intersection between each plane and each solid are tangent conditions, as are lines that touch a surface at a single point.

Tangent

No line drawn at  tangency Line drawn

(A) (B)

Not
tangent

Figure 3.22

Tangent and nontangent conditions in 3-D geometry
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Figure 3.24

Circle definitions
A circle is a single-curved plane with all points at an equal distance from a point called the center. The important features of a circle
are shown.

Practice Exercise 3.6
Using physical models of spheres, cylinders, cones, and
planes, create points/lines of tangencies.

Using 2-D and 3-D computer models, use transformation
commands (MOVE, ROTATE, and OBJECT SNAP) to position
objects so that they make contact. Will all conditions of two
objects touching at a single point/line result in a tangency?
What if there is overlap and they touch at more than one
point/line? Use 2-D/3-D Boolean intersect commands to
evaluate both tangent and nontangent relationships.

Tangent construction is an important part of technical
drawing. With traditional tools, tangencies are constructed

using triangles and a compass. With CAD, tangent con-
struction is performed automatically, using TANGENT
point snap commands.

3.5.4 Circles

A circle is a single-curved-surface primitive, all points of
which are equidistant from one point, the center. A circle is
also created when a plane passes through a right circular
cone or cylinder and is perpendicular to the axis of the cone.

The elements of a circle are as follows (Figure 3.24):
Center. The midpoint of the circle.
Circumference. The distance all the way around the circle.
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Radius. A line joining the center to any point on the cir-
cumference.

Chord. A straight line joining any two points on the cir-
cumference.

Diameter. A chord that passes through the center. The
diameter is equal to twice the radius.

Secant. A straight line that goes through a circle but not
through the center.

Arc. A continuous segment of the circle.
Semicircle. An arc measuring one-half the circumference

of the circle.
Minor arc. An arc that is less than a semicircle.
Major arc. An arc that is greater than a semicircle.
Central angle. An angle formed by two radii.
Sector. An area bounded by two radii and an arc, usually a

minor arc.
Quadrant. A sector equal to one-fourth the area of the cir-

cle. The radii bounding a quadrant are at right angles to
each other.

Segment. An area bounded by a chord and a minor arc.
The chord does not go through the center.

Tangent. A line that touches the circle at one and only one
point.

Concentric circles. Circles of unequal radii that have the
same center point.

Eccentric circles. Circles of unequal radii that have differ-
ent centers, and one circle is inside the other.

Circumscribed circle. A circle drawn outside of a polygon
such that each vertex of the polygon is a point on the
circle.

Inscribed circle. A circle drawn inside a polygon such that
all sides of the polygon are tangent to the circle.

To construct a circle using a compass, refer to
Chapter 1.

Drawing a Circle Using a Template Templates are often
used to construct circles for technical drawings. The tem-
plate is made of plastic with multiple holes of various
diameters. Each hole is of a specific diameter that is
marked on the template, along with guidelines to align the
hole with the center lines for the circle to be drawn (Fig-
ure 3.25). 

3.6 Conic Curves
Conic curves, or conics, are special-case single-curved
lines that can be described in several ways: as sections
of a cone; as algebraic equations; and as the loci of
points. For our purposes, conics are the curves formed
by the intersection of a plane with a right circular cone,
and they include the ellipse, parabola, and hyperbola.
(The circle is a special case ellipse.) A right circular
cone is a cone that has a circular base and an axis that
passes at 90 degrees through the center of the circular
base.

Conics are often used in engineering design and in
science to describe physical phenomena. No other
curves have as many useful properties and practical
applications.
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Step 1

1

Step 2

1

Step 3

Figure 3.25

Constructing a circle using a template
A circle template can be used instead of a compass to draw circles. The template comes in a series of standard sizes. To construct a cir-
cle using a template, align the marks on the template with the center lines for the circle.
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3.6.1 Parabolas

A parabola is the curve created when a plane intersects a
right circular cone parallel to the side (elements) of the cone
(Figure 3.26). A parabola is a single-curved-surface primi-
tive. Mathematically, a parabola is defined as the set of points
in a plane that are equidistant from a given fixed point, called
a focus, and a fixed line, called a directrix. (Figure 3.26) 

Engineering Applications of Parabolas Parabolas have a unique
reflective property, as shown in Figure 3.27. Rays originating
at a parabola’s focus are reflected out of the parabola parallel
to the axis, and rays coming into the parabola parallel to the
axis are reflected to the focus. Parabolas are used in the design
of mirrors for telescopes, reflective mirrors for lights, such as

automobile headlights, cams for uniform acceleration,
weightless flight trajectories, antennae for radar systems,
arches for bridges, and field microphones commonly seen on
the sidelines of football games.

A parabola revolved about its axis generates a 3-D
ruled surface called a paraboloid. An auditorium ceiling
in the shape of a paraboloid reduces reverberations if the
speaker is standing near the focus.

3.6.2 Hyperbolas

A hyperbola is the curve of intersection created when a
plane intersects a right circular cone and makes a smaller
angle with the axis than do the elements (Figure 3.28). A

Plane makes same
angle as do the

elements

Cutting plane parallel to
the side or element l

P

P'
FV

Directrix

Axis

Focus

Parabola

TRUE SIZE VIEW

Figure 3.26

Parabola
A parabolic curve is created by passing a plane through a cone, with the plane parallel to the side (elements) of the cone. A parabolic
curve is defined mathematically as a set of points that are equidistant from a focus point and a directrix.

ber22098_ch03.qxd  4/20/01  12:21 PM  Page 151



hyperbola is a single-curved-surface primitive. Math-
ematically, a hyperbola is defined as the set of points
in a plane whose distances from two fixed points,
called the foci, in the plane have a constant difference
(Figure 3.29).

Engineering and Science Applications of Hyperbolas Hyper-
bolic paths form the basis for the Long Range Navigation
(LORAN) radio navigation system. Hyperbolas are also
important in physics, as Einstein discovered in his theory of
relativity. Ernest Rutherford discovered that when alpha par-
ticles are shot toward the nucleus of an atom, they are
repulsed away from the nucleus along hyperbolic paths. In
astronomy, a comet that does not return to the sun follows a
hyperbolic path. 

Reflecting telescopes use elliptical, hyperbolic, and
paraboloid mirrors, as shown in Figure 3.30. Light from
a celestial body reflects off a primary parabolic mirror at
the base of the telescope and heads to the focus of the
parabola. A hyperbolic mirror is positioned such that the
focus of the parabola and one focus of the hyperbola are
in the same plane. The light reflecting from the parabolic
mirror reflects off the hyperbolic mirror and goes

through the second focus of the hyperbola. This focus is
shared with the focus of a partial elliptical mirror. The
light is then reflected through the other focus of the
ellipse, which is where the eyepiece of the telescope is
located.

3.6.3 Ellipses

An ellipse is a single-curved-surface primitive and is
created when a plane passes through a right circular cone
at an angle to the axis that is greater than the angle
between the axis and the sides (Figure 3.31). Also, a cir-
cle, when viewed at an angle, appears as an ellipse (Fig-
ure 3.32). Mathematically, an ellipse is the set of all
points in a plane for which the sum of the distances from
two fixed points (the foci) in the plane is constant (Fig-
ure 3.33). The major diameter (major axis) of an ellipse
is the longest straight-line distance between the sides
and is through both foci. The minor diameter (minor
axis) is the shortest straight-line distance between the
sides and is through the bisector of the major axis. The
foci are the two points used to construct the perimeter
and are on the major axis.
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Telescope mirror

Light rays

Eye piece

Searchlight mirror

Light rays

Light source

Zero g Zero g

Parabola

Zero g

Weightless flight trajectoryBeam of uniform strength

Parabola

Load

Figure 3.27

Engineering applications for a parabola
Common applications include mirrors for lights and telescopes and for structural beams.
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Plane makes smaller angle with
axis than do the elements

Orthographic view

Hyperbola

Figure 3.28

Hyperbola
A hyperbola is created by passing a plane through a cone at a smaller angle with the axis than that made by the elements.

Mathematical definition of a hyperbola
The set of points in a plane whose distances from two fixed
points, called the foci, in the plane have a common difference.

y

Directrix: y = p (0,p)
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O

Focus F(0, -p)

Q(x,p)

P(x,y)

x

Focus

Axis of Symmetry

Figure 3.29

Parabola

Ellipse

Hyperbola

Focus

Focus

Focus and
eyepiece

Figure 3.30

Telescope
Schematic representation of a telescope that uses hyperbolic,
parabolic, and elliptical mirrors.

ber22098_ch03.qxd  4/20/01  12:21 PM  Page 153



154 CHAPTER 3

Ellipse

Figure 3.31

Ellipse
An ellipse is formed by the line of intersection between an
inclined plane and a cone.

Line of sight

Edge view of
circle

What you see

Figure 3.32

Line of sight to create ellipses
A line of sight other than 90 degrees changes the appearance of
a circle to an ellipse.

Focus Focus

A

B

C

D

AB+BC = AD+CD

Figure 3.33

Mathematical definition of an ellipse
An ellipse is mathematically defined as the set of points for which the sum of the distances to two focus points is constant. 

Constructing an Ellipse Using a Template
Step 1. To draw an ellipse using a template, draw the major

and minor diameters for the ellipse (Figure 3.35). Deter-
mine the angle and find the applicable ellipse tem-
plate. Determine which ellipse on the template most
closely matches the major and minor diameters.

Step 2. Line the template ellipse marks along the major and
minor diameters and draw the ellipse, using the template
as a guide.

Ellipse templates come in intervals of 5 degrees, such as
20, 25, and 30. The viewing angle relative to the circle deter-
mines the ellipse template to be used. (Figure 3.34) Each
ellipse has a set of center lines marked on the plastic to align
with the major and minor diameters drawn on the paper.
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Line of sight

Ellipse angle

Right side
view

Front view

Figure 3.34

Viewing angle determines ellipse angle
The viewing angle relative to the circle determines the ellipse template to be used. The circle is seen as an inclined edge in the right
side view and foreshortened (as an ellipse) in the front view. The major diameter is equal to the diameter of the circle.
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9/16

5/8

11/16

3/4

13/16

7/8

15/16

1

40° Ellipse angle

Figure 3.35

Drawing an ellipse using a template

A CAD system will automatically create an ellipse once
the major and minor diameters are specified and the location
of the center point (the intersection of the major and minor
diameters) is picked. Most CAD systems will provide more
than one type of ellipse, such as isometric ellipses.

Engineering and Science Applications of Ellipses The ellipse
has a reflective property similar to that of a parabola. Light or
sound emanating through one focus is reflected to the other,
and this is useful in the design of some types of optical
equipment. Whispering galleries, such as the Rotunda in the
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Design in Industry
New Tools Help Link Computer-Aided Industrial Design with Mechanical CAD

Increased efficiency in design and engineering operations
means a tighter data link between the initial design work done
by the industrial designers and the engineering on the design
team. Tighter integration is desired between computer-aided
industrial design (CAID) and traditional CAD because it allows
the industrial designer’s vision to carry through to product
engineering and manufacturing, ensuring that what the design
intends is what gets built. Unfortunately, the transfer of model
data from CAID systems to CAD systems has traditionally
been so difficult that many firms have not attempted to do it.
Instead, model information has to be reconstructed in the
CAD system, losing valuable time and introducing unintended
changes in the original design.

Though new and better translation tools have been devel-
oped, CAID-CAD integration issues are also affected by basic
human issues. How models are created in their respective pack-
ages, how they are documented, and how this model informa-
tion is communicated between designers and engineers all
affect how successful the translation is likely to be. Effective
integration depends on both new software tools and new ways
of thinking about how models are created and managed.

Even though both CAID and CAD tools define model
shapes mathematically, that is where the similarity often
ends. CAID is a tool for creative expression. Industrial design-
ers need to be able to experiment with shape and form with
few restrictions. On the other hand, engineers using CAD
tools implement a rigor and discipline to the models at this
stage in the design.

CAID programs such as Alias/Wavefront’s Studio Tools,
PTC’s ICEM Surf, and SDRC’s Imageware provide the kind of
freeform surface modeling tools that let designers create

organic forms on the screen. They facilitate the creative
process by allowing users “push and pull” surfaces and imme-
diately see the results. While the model may be mathematically
precise, the designers might never type in a specific coordinate
or size. The goal for an industrial designer is to capture a look
and feel for the model. While designers may be very concerned
with the usability metrics of the model by the end user, they
may be much less concerned with the structural integrity of
components and manufacturability of the product.

Engineers using CAD tools, on the other hand, apply a dif-
ferent philosophy. Their job is to capture the intent of the
industrial designers and convert it into an engineered prod-
uct. Precise variables, such as clearances, tolerances, wall
thicknesses, and draft angles, now become important para-
meters to consider. The goal for the engineer is to apply this
level of precision while adjusting geometries to meet engi-
neering and manufacturing benchmarks, and still preserve
the designer’s concept.

Given the challenges of preserving the design intent while
applying engineering constraints, problems in converting the
CAID model add another level of complexity. In an ideal world,
the CAID surface model (in essence, a “sketch model”) would
seamlessly be converted into a CAD solid model that the engi-
neer can work on. One of the problems is that to the CAD solid
modeler, the surface model must be “watertight.” This means
that there can be no gaps between patches in the surface
model. These gaps might not be visible on the computer
screen, but mathematically it creates difficulties for the solid
modeler to interpret and convert. Farther down the road, these
gaps can also create difficulties in generating CAM tool paths,
since the tool paths can “fall” into the gaps between surfaces.

Capitol Building in Washington, D.C. (Figure 3.36) and the
Mormon Tabernacle in Salt Lake City, Utah, are designed
using elliptical ceilings. In a whispering gallery, sound ema-
nating from one focus is easily heard at the other focus.

Ellipses are also useful in astronomy. Kepler’s first law
states that the orbit of each planet in the solar system is an
ellipse, with the sun at one focus. In addition, satellites sent
into Earth’s orbit travel in elliptical orbits about the Earth.

3.7 Roulettes
Roulettes are curves generated by the rolling contact of
one curve or line on another curve or line. Any point
attached to the rolling curve or line will describe the
roulette curve. The moving point is called the generating

point. The roulette is constructed by moving the rolling
curve or line to a number of new positions, marking the
corresponding positions of the generating point, and
drawing a curve connecting those points. There are an
infinite variety of roulettes, some of which are more
important than others in engineering design, such as in the
design of machine elements, instruments, and mechanical
devices. The most common types of roulettes used in
engineering are spirals, cycloids, and involutes.

3.7.1 Spirals

A spiral is a single-curved surface that begins at a point
called a pole and becomes larger as it travels in a plane
around the origin (Figure 3.37). A spiral is sometimes
referred to as a spiral of Archimedes, which is the curve on a
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Newer CAD translators can automatically “heal” gaps
between surfaces or give the operator the ability to manually
“stitch” them closed. However, if the designer has created a
surface model with hundreds of patches and a similar num-
ber of gaps, the engineer may decide that the time needed to
repair the model is not worth it. This is an example of where
good modeling practice on the part of the designer can make
a difference. Creating a model with the fewest number of
patches and using modeling techniques that reduce gap for-
mation will facilitate later model translation.

The gap problem can also be alleviated by synchronizing
the “gap tolerances” settings in the CAID and CAD modelers.
The gap tolerance determines what is seen as one surface or
two distinct surfaces by the model. Curve continuity toler-
ance differences can also lead to problems in defining what is
a continuous surface and what are two difference surfaces.

Another key strategy in successful model translation is to
pick an appropriate vehicle for translation. Traditionally, neutral
file formats such as STEP or IGES have been used for transla-
tion. As much as this method has been used, there are still
problems. Among other things, the model data needs to be
translated twice: once from the CAID format to the neutral for-
mat and then again to the CAD format. Each translation has the
potential for introducing errors into the model. CAID and CAD
vendors have addressed this issue by beginning to provide
direct translators. For example, Alias|Wavefront has worked
with major CAD vendors to create “direct connects” between
its Studio software and Catia, Unigraphics, and I-DEAS.

In addition to direct translators, some CAID tools allow the
user to use “presets” that specify, prior to creating the sur-
face model, what CAD package will eventually receive the

CAID model. These settings help create a surface model with
the appropriate level of tolerances so that it can easily be
received by the target CAD system.

Even with the help of new software tools, there is still a
“cultural divide” between the industrial designers creating the
initial concept models and the engineers creating an engi-
neered and manufacturable product. Better understanding
between these two key players in the product design
process, and new translation tools, will help heal the divide
between CAID and CAD.

Source: Adapted from Potter, Caren D., “The CAID Connection,” Computer
Graphics World, March 2000, pp. 21–27

spoke of a circle as the circle rolls along tangent to a
straight line.

Practice Exercise 3.7
Make a circular cardboard disk with a hole punched near its
perimeter. With a pencil in the hole, run the circle along a
straightedge to create a cycloid. Do the same but run the cir-
cle along the internal (epicycloid) and external (hypocycloid)
perimeter of another circle. (Similar effects can be created
using a SpirographTM.)

Cycloid curves are commonly used in kinematics
(motion studies) and in mechanisms that work with
rolling contact. Epicycloids and hypocycloids are often
used in rotary pumps, blowers, and superchargers.

157

heart cam that converts uniform rotary motion into uniform
reciprocal motion.

3.7.2 Cycloids

A cycloid is the curve generated by the motion of a point
on the circumference of a circle as the circle is rolled
along a straight line in a plane (Figure 3.38). The length
of the cycloid curve is defined as exactly equal to four
diameters of the rolling circle, and the area between the
cycloid and the baseline AB equals three times the area of
the rolling circle.

An epicycloid is formed when the circle is rolled on
the outside of another circle. A hypocycloid is formed
when the circle is rolled on the inside of another circle. A
trochoid is the curve formed by a point on the radial

(Courtesy of Frog Design.)
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A spiral of Archimedes
A single-curved surface that begins at a point called a pole and becomes larger as it travels in a plane around the origin.

A B

D
C

Figure 3.38

Generation of a cycloid
A cycloid is generated by the motion of a point on the circumference of a circle that is rolled along a straight line.

Figure 3.36

Ellipse application
The Rotunda in the Capitol Building in Washington, D.C., has
an elliptical ceiling.
(© Photri Inc.)

3.7.3 Involutes

An involute is the spiral path of a point on a string unwind-
ing from a line, circle, or polygon. Involutes of circles are
used in the design of spur gears (Figure 3.39). The contact
surfaces between gear teeth are designed as involutes. The
involutes permit motion to be transmitted smoothly and at a
constant velocity, which is important in mechanisms using
gears. Figure 3.40 is an involute gear tooth profile con-
structed by the method shown in Figure 3.39. The curve on
the profile of the gear tooth is the involute.

Practice Exercise 3.8
Wrap a string around a coffee can. Attach a pencil to the
free end of the string. Place the can on a piece of paper
and, holding the string tight, draw while unwrapping the
string. Change diameters of the can to create different
involutes.
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3.8 Double-Curved Lines, Including Helixes
A double-curved line is a curve generated by a point mov-
ing uniformly at both an angular and a linear rate around a
cylinder or cone. The line of intersection between two
curved solids forms a double-curved line. Cylindrical and
conical helixes are examples of double-curved lines.

A helix is the curve formed by a point moving uni-
formly at both an angular and a linear rate around a cylin-
der or cone. Because of the uniform angular rate, a helix is
a curve of constant slope, called the helix angle. A cylin-
drical helix is the curve formed by a point moving uni-
formly at both an angular and a linear rate around a cylin-
der. The distance that the point moves parallel to the axis
during one revolution is called the lead or pitch. A screw
thread is a common application of a cylindrical helix, as
are spiral staircases, worm gears, drill bits, spiral milling
cutters, springs, and conveyors (Figure 3.41). A conical
helix is the curve formed by a point moving uniformly at
both an angular and a linear rate around a cone.

Some CAD systems can automatically generate a helix
with a HELIX command when the diameter, axis, number
of turns, and direction of rotation are specified.

3.9 Freeform Curves
Simple curves are circles, arcs, and ellipses. More com-
plex curves used in engineering design are called
freeform curves. The automobile shown in Figure 3.42
uses many freeform curves in the body design.

Freeform curves are constructed with a traditional tool
called a spline. A spline is a flexible strip of plastic or other
material that can change shape easily to pass through a

series of key design points (control points) marked on the
drawing. The spline curve is one of the most important
curves used in the aircraft and shipbuilding industries. The
cross section of an airplane wing or a ship’s hull is a spline
curve. Also, spline curves are commonly used to define the
path of motion for a computer animation.

For CAD systems, three types of freeform curves were
developed: splines, Bezier curves, and B-spline curves.
These curves can be described by parametric equations, in
which the X and Y coordinates of the control points are
computed as a function of a third variable called a parame-
ter. If the curves are created by smoothly connecting the
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Constructing the involute of a circle
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Involute application
Part of the gear tooth profile is an involute.

Figure 3.41

Helix application
The screw thread found on nuts and bolts is a common applica-
tion of a cylindrical helix.
(© Photri Inc.)
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control points, the process is called interpolation (Figure
3.43A). If the curves are created by drawing a smooth
curve that goes through most, but not all, of the control
points, the process is called approximation (Figure 3.43B).

3.9.1 Spline Curves

A spline curve is a smooth, freeform curve that connects a
series of control points (Figure 3.44A). Changing any sin-
gle control point will result in a change in the curve, so that
the curve can pass through the new point. (Figure 3.45A)

3.9.2 Bezier and B-Spline Curves

In computer graphics, it is possible to create an easily
modified smooth curve that passes close to but not
through the control points. These curves, called approxi-
mations, include the Bezier and B-spline curves.

P. E. Bezier, of the French automobile company Renault,
developed an approximation curve to give designers greater
flexibility than was available with interpolation techniques.
This mathematical curve became known as the Bezier
curve, which uses a set of control points that only approxi-
mate the curve (Figure 3.44B). The Bezier curve is popular
in design because the first and last control points are on the
curve. However, changing the position of any control point
causes a reshaping of the entire curve, so modifications are
not localized; that is, there is no local control (Figure 3.45B).

Further developments led to the B-spline curve, which
approximates a curve to a set of control points and does
provide for local control (Figure 3.44C). The B-spline uses
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Freeform surfaces
An automobile body reflects many freeform curves.
(© Davis Barber: PhotoEdit.)

(A)

(B)

Figure 3.43

Curves
Two different curves are created, depending on whether interpo-
lation (A) or approximation (B) is used.

(A)  Spline

(B)  Bezier

(C)  B-Spline

Figure 3.44

Freeform curves
Spline, Bezier, and B-spline curves create different results from
the same set of control points.
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a special set of blending functions that have only local
influence and depend on only a few neighboring control
points. This means that a local change does not result in a
global change to the entire curve (Figure 3.45C).

3.10 Angles
Angles are formed by the apex of two intersecting lines or
planes. Angles are categorized by their degree measure-
ment (Figure 3.46).

Straight angle. An angle of 180 degrees. 
Right angle. An angle of 90 degrees. 
Acute angle. An angle of less than 90 degrees. 
Obtuse angle. An angle of more than 90 degrees. 
Complementary angles. Two adjacent angles whose sum

equals 90 degrees. 
Supplementary angles. Adjacent angles whose sum equals

180 degrees. 
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Result of changing control points
Changing a control point on a curve produces different results,
depending on the type of curve used.
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3.11 Planes
A plane is a two-dimensional surface that wholly contains
every straight line joining any two points lying on that
surface. Although many drawings are created from simple
geometric primitives, such as lines and curves, many real-
world designs are made of planar surfaces. Theoretically,
a plane has width and length but no thickness. In practice,
planar surfaces have some thickness.

An infinite plane is an unbounded two-dimensional sur-
face that extends without a perimeter in all directions. A
finite plane is a bounded two-dimensional surface that
extends to a perimeter in all directions. A plane can be
defined by three points not in a straight line; two parallel
lines; a line plus a point that is not on the line or its exten-
sion; or two intersecting lines (Figure 3.47).

3.12 Surfaces
A surface is a finite portion of a plane, or the outer face of
an object bounded by an identifiable perimeter. The fender
of an automobile and the airplane wing are examples of
complex 3-D surfaces (Figure 3.48). Just as a line repre-
sents the path of a moving point, a surface represents the
path of a moving line, called a generatrix. A generatrix
can be a straight or curved line. The path that the genera-
trix travels is called the directrix. A directrix can be a
point, a straight line, or a curved line (Figure 3.49F).

The shape of a surface is determined by the constraints
placed on the moving line used to generate the surface.
Surfaces are generally classed as planar, single-curved,
double-curved, warped, and freeform.
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Planes
Planes are formed by three points, two parallel lines, a line and a
point, or two intersecting lines.

Figure 3.48

3-D Surface
An airplane wing is a good example of a complex 3-D surface.
(© Photri, Inc. )
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Surfaces
Examples of surfaces commonly used in engineering design.
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A planar surface is a flat, two-dimensional bounded
surface (Figure 3.49A). A planar surface can be
defined as the motion of a straight-line generatrix that
is always in contact with either two parallel straight
lines, two intersecting lines, or a line and a point not
on the line.

A single-curved surface is the simple-curved bounded
face of an object produced by a straight-line generatrix
revolved around an axis directrix (yielding a cylinder)
or a vertex directrix (yielding a cone) (Figure 3.49B).

A double-curved surface contains no straight lines and is
the compound-curved bounded face of an object pro-
duced by an open or closed curved-line generatrix
revolved around an axis directrix (yielding a sphere or
ellipsoid), a center directrix (yielding a torus), or a ver-
tex directrix (yielding a paraboloid or a hyperboloid)
(Figure 3.49C).

A warped surface is a single- and double-curved transi-
tional surface (cylindroid, conoid, helicoid, hyperbolic
paraboloid), often approximated by triangulated sur-
face sections that may join other surfaces or entities
together (Figure 3.49D).

A freeform surface follows no set pattern and requires more
sophisticated underlying mathematics (Figure 3.49E).

Surfaces can also be classified as ruled, developable, or
undevelopable, as follows:

A ruled surface is produced by the movement of a straight-
line generatrix controlled by a directrix to form a planar,
single-curved, or warped surface (Figure 3.49F).

A developable surface can be unfolded or unrolled onto a
plane without distortion. Single-curved surfaces, such as
cylinders and cones, are developable (Figure 3.49G).

An undevelopable surface cannot be unfolded or
unrolled onto a plane without distortion. Warped and
double-curved surfaces, such as a sphere or an ellip-
soid, cannot be developed except by approximation
(Figure 3.49H). For example, the Earth is nearly a
sphere, and representing its land forms on flat paper
has taken cartographers centuries to develop. On some
types of maps, the land forms near the poles are drawn
much larger than they really are, to compensate for the
curvature that can’t be shown. 

The advancement of computer graphics has resulted in the
development of special types of surfaces that are mathe-
matically generated to approximate complex freeform
surfaces. These complex surfaces are created by a series
of patches, where a patch is a collection of points
bounded by curves and is the simplest mathematical ele-

ment that can be used to model the surface. Some of the
more common computer-generated freeform surfaces are:

Fractal
B-spline
Coons’
Bezier
Nonuniform Rational B-spline (NURBS)

These names reflect the underlying geometry used to gen-
erate the curves. For example, B-spline curves are used to
generate a B-spline surface patch.

Traditionally, orthographic views are used to represent
surfaces. With CAD, it is possible to create mathematical
models of very complex surfaces that would be impossi-
ble to represent using traditional tools. The computer
model can be used to determine surface characteristics
such as area. One such surface, called a surface of revo-
lution, is created by revolving a curve (generatrix) in a
circular path (directrix) about an axis. These types of sur-
faces are used on any part that requires surfaces with arc
or circular cross sections. Another method of creating sur-
faces with CAD is to sweep generator entities, such as cir-
cles, arcs, and lines, along director entities, as shown in
Figure 3.50. This method of creating surfaces is called
swept surfaces. Swept surfaces are often used for product
and tooling design.

3.12.1 Two-Dimensional Surfaces

Two-dimensional surfaces are simple ruled surfaces and
include closed curves, quadrilaterals, triangles, and regu-
lar polygons. (See Figure 3.15.) These geometric primi-
tives are the building blocks for more complex surfaces
and solids. For example, CAD creates more complicated
3-D forms through extrusion and sweeping operations,
such as creating a rectangular prism by extruding a rectan-
gular surface.

Quadrilaterals Quadrilaterals are four-sided plane fig-
ures of any shape. The sum of the angles inside a quadrilat-
eral will always equal 360 degrees. If opposite sides of the
quadrilaterals are parallel to each other, the shape is called
a parallelogram. The square, rectangle, rhombus, and
rhomboid are parallelograms. Quadrilaterals are classi-
fied by the characteristics of their sides (Figure 3.51).

Square. Opposite sides parallel, all four sides equal in
length, all angles equal.

Rectangle. Opposite sides parallel and equal in length, all
angles equal.
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Rhombus. Opposite sides parallel, four sides equal in
length, opposite angles equal.

Rhomboid. Opposite sides parallel and equal in length,
opposite angles equal.

Regular trapezoid. Two sides parallel and unequal in
length, two sides nonparallel but equal in length, base
angles equal, vertex angles equal.

Irregular trapezoid. Two sides parallel, no sides equal in
length, no angles equal.

Trapezium. No sides parallel or equal in length, no angles
equal.

Quadrilaterals are constructed using straightedges, trian-
gles, and a compass to create parallel lines and to measure
equal angles.

Regular Polygons A polygon is a multisided plane of any
number of sides. If the sides of the polygon are equal in
length, the polygon is called a regular polygon. Regular
polygons can be inscribed in circles. To determine the
angle inside a polygon, use the equation S = (n – 2) × 180
degrees, where n equals the number of sides. Regular
polygons are grouped by the number of sides (Figure
3.52).

Triangle (equilateral). Three equal sides and angles.
Square. Four equal sides and angles.
Pentagon. Five equal sides and angles.
Hexagon. Six equal sides and angles.
Heptagon. Seven equal sides and angles.
Octagon. Eight equal sides and angles.
Nonagon. Nine equal sides and angles.
Decagon. Ten equal sides and angles.
Dodecagon. Twelve equal sides and angles.
Icosagon. Twenty equal sides and angles.

Triangles A triangle is a polygon with three sides. The
sum of the interior angles equals 180 degrees. The vertex
is the point at which two of the sides meet. Triangles are
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named according to their angles (right, obtuse, acute) or
the number of equal sides (Figure 3.53).

Equilateral triangle. Three equal sides and three equal
interior angles of 60 degrees. 

Isosceles triangle. At least two equal sides. 
Scalene triangle. No equal sides or angles. 
Right triangle. Two sides that form a right angle (90

degrees), and the square of the hypotenuse is equal to
the sum of the squares of the two sides (Pythagoras
Theorem). 

Obtuse triangle. One obtuse angle (greater than 90
degrees). 

Acute triangle. No angle larger than 90 degrees. 

Right triangles are acute triangles. A right triangle can be
either an isosceles triangle, where the other two angles are
45 degrees, or a 30/60 triangle, where one angle is 30
degrees and the other is 60 degrees.

Pentagons A pentagon has five equal sides and angles.

Hexagons A hexagon has six equal sides and angles.
Hexagons are constructed by using a 30/60-degree trian-
gle and a straightedge to construct either circumscribed or
inscribed hexagons around or in a given circle.

The construction techniques described are useful for
drawing the heads of hexagonal nuts and bolts. Nuts and
bolts are designated by the distance across the flats. For
example, for a 1′′ hexagonal bolt head, draw a 1′′ diame-
ter circle, then circumscribe a hexagon around the circle.

For more detailed information on drawing such fasteners,
see Chapter 10.

3.12.2 Ruled Surfaces

Polyhedra, single-curved surfaces, and warped surfaces
are classified as ruled surfaces (Figure 3.49). All ruled
surfaces, except for warped surfaces, are developable.

With traditional tools, simple plane surfaces are drawn
using triangles and straightedges.

Some CAD systems have surface modeling programs
that can be used to create simple plane surfaces and more
complicated ruled surfaces.

Single-Curved Surfaces Single-curved surfaces are gener-
ated by moving a straight line along a curved path such
that any two consecutive positions of the generatrix are
either parallel (cylinder), intersecting (cone), or tangent
to a double-curved line (convolute). (These surfaces can
also be generated by sweeping a curved generatrix along
a straight-line directrix.) The cone, cylinder, and convo-
lute are the only types of surfaces in this class and they
all are developable. Most CAD systems will display a
single-curved surface with a series of elements, facets, or
tessellations, and some can automatically develop the
surface (Figure 3.54).

Cones There are three basic classifications of cones
(Figure 3.55). If the axis is perpendicular to the base, the

166 CHAPTER 3

Triangle Square Pentagon Hexagon Heptagon

Octagon Nonagon Decagon Dodecagon Icosagon

Figure 3.52

Polygons 
Classification of regular polygons.
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axis is called the altitude and the cone is called a right
cone. If the axis is not perpendicular to the base, the cone
is called an oblique cone. If the tip of the cone is cut off, it
is called a truncated cone or a frustum of a cone.

There are many applications for cones in engineering
design, including the nose cone of rockets; transition
pieces for heating, ventilating, and air-conditioning sys-
tems; conical roof sections; and construction cones used
to alert people to construction areas.

The directrix for a cone may be either a single or dou-
ble curve. The directrix may also assume any irregular
shape, but is normally circular or elliptical. Cones are
therefore further classified by the path of the generatrix:
circular, elliptical, nephroidal, deltoidal, astroidal, car-
dioidal, and free curve.

Engineering Geometry 167

Equilateral triangle
All sides equal;
all angles equal.

(A)

Vertex

S
id

e S
ide

Isosceles triangle
2 sides equal;

2 angles equal.

(B)

A
lti

tu
de

Scalene triangle
No sides or

angles equal.

(C)

Right triangle
One 90° angle.

(D)

(AB)2 = (AC)2 + (CB)2

A

C B

9

16

25

Theorem of
Pythagoras

Obtuse
angle

Obtuse
triangle

Acute
angle

Acute
triangle

Base
90°

Figure 3.53

Triangles
Classification of triangles.

Figure 3.54

Faceted representation of a cone
The computer display of a single-curved surface, such as a cone,
will often show the surface as elements or tessellation lines.
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Most 3-D CAD systems can easily produce many of
the cones described in this section. One approach with
CAD uses the 3-D primitive geometry commands. For
example, to create a circular cone, the primitive com-
mand CONE is used to define the location and circumfer-
ence of the base and the location of the vertex. A noncir-
cular cone is created by constructing the noncircular
base, then extruding that form along a defined axis to a
vertex point.

Cylinders A cylinder is a single-curved ruled surface
formed by a vertical, finite, straight-line element (genera-
trix) revolved parallel to a vertical or oblique axis direc-
trix and tangent to a horizontal circular or elliptical direc-
trix. The line that connects the center of the base and the
top of a cylinder is called the axis. If the axis is perpendic-
ular to the base, the cylinder is a right cylinder. If the axis
is not perpendicular to the base, the cylinder is an oblique

cylinder. A multiview drawing of a right circular cylinder
shows the base curve (a circle), the extreme elements, and
the axis (Figure 3.56).

If the base curve is a circle, the cylinder is circular. If
the base curve is an ellipse, the cylinder is elliptical.

Practice Exercise 3.9
Take four clay or foam right-angle cones and cut them at
angles appropriate to make circular, elliptical, parabolic,
and hyperbolic sections. Look at the cut sections from a
perpendicular viewpoint and along the major axis of the
cone. Viewing along the major axis of the cone, which sec-
tions look circular? Which look like a line? Which have
other shapes?

Take four clay, foam, or paper cylinders of the same alti-
tude and base diameter as the cones, and cut them at identi-
cal angles. Compare the resulting sections (side-by-side and
face-to-face). Are any the same size? Are any the same
shape? View these new sections along a normal axis and
along the major axis.

Repeat the above exercise with 3-D computer models.
Use Boolean subtraction operations or a SECTION com-
mand.

Convolutes A convolute is a single-curved surface gener-
ated by a straight line moving such that it is always tangent
to a double-curved line. Figure 3.57 shows the generation
of a convolute using a helix curve (the double-curved line)
as the directrix, which results in a helical convolute.

Polyhedra A polyhedron is a symmetrical or asymmet-
rical 3-D geometric surface or solid object with multiple
polygonal sides. The sides are plane ruled surfaces (Fig-
ure 3.58) and are called faces, and the lines of intersec-
tion of the faces are called the edges. Regular polyhe-
dra have regular polygons for faces. There are five
regular polyhedrons: tetrahedron, hexahedron, octahe-
dron, dodecahedron, and icosahedron. As solids, these
are known as the five platonic solids. Some polyhedra,
such as the tetrahedron, pyramid, and hexahedron, are
easily produced with 3-D CAD programs by using extru-
sion techniques.

Regular polyhedra are classified by the shape and num-
ber of faces, as follows.

Tetrahedron. A symmetrical or asymmetrical 3-D surface
or solid object with four equilateral triangular sides.
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Hexahedron. A symmetrical or asymmetrical 3-D surface
or solid object with six quadrilateral sides.

Octahedron. A symmetrical or asymmetrical 3-D surface
or solid object with eight equilateral triangular sides.

Dodecahedron. A symmetrical or asymmetrical 3-D sur-
face or solid object with twelve pentagonal sides.

Icosahedron. A symmetrical or asymmetrical 3-D sur-
face or solid object with twenty equilateral triangular
sides.

Practice Exercise 3.10
Create real models of polyhedra using the developments
found at the end of the book. Make real models of the cube,
prism, and tetrahedron. Sketch the multiviews and pictorials
of each real model created from the developments.

Using a CAD solid modeler with primitive commands, create
solid models of regular polyhedra. View the polyhedra from var-
ious viewpoints, with hidden lines shown and then removed.
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Polygonal Prisms A polygonal prism is a polyhedron
that has two equal parallel faces, called its bases, and lat-
eral faces that are parallelograms (Figure 3.59). The paral-
lel bases may be of any shape and are connected by paral-
lelogram sides. A line connecting the centers of the two
bases is called the axis. If the axis is perpendicular to the
bases, the axis is called the altitude and the prism is a
right prism. If the axis is not perpendicular to the bases,
the prism is an oblique prism. A truncated prism is one
that has been cut off at one end, forming a base that is not
parallel to the other base. A parallelepiped is a prism with
a rectangle or parallelogram as a base. Polygonal prisms
are easily produced with 3-D CAD programs by using
extrusion techniques.

Pyramids A pyramid is a polyhedron that has a polygon
for a base and lateral faces that have a common intersec-
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tion point, called a vertex. The axis of a pyramid is the
straight line connecting the center of the base to the ver-
tex. If the axis is perpendicular to the base, the pyramid is
a right pyramid; otherwise, it is an oblique pyramid (Fig-
ure 3.60). A truncated or frustum pyramid is formed when
a plane cuts off the vertex. The altitude of a pyramid is the
perpendicular distance from the vertex to the center of the
base plane. 

Warped Surfaces A warped surface is a double-curved
ruled 3-D surface generated by a straight line moving
such that any two consecutive positions of the line are
skewed (not in the same plane). Warped surfaces are not
developable. Figure 3.61 illustrates an example of a

warped surface. Lines MN and OP are neither parallel nor
intersecting. To connect them with a smooth surface, to
form a sheetmetal panel for an automobile, for example, a
warped surface must be used.

3.12.3 Fractal Curves and Surfaces

Benoit Mandlebrot of the IBM Research Center pio-
neered an investigation into the nature of self similarity,
which is the condition where a figure is repeated or mim-
icked by smaller versions of itself. Well-known occur-
rences of self similarity are coastlines, mountain ranges,
landscapes, clouds, galaxy structures, radio noise, and
stock market fluctuations. For example, a coastline
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viewed from orbit will have a certain level of ruggedness,
caused by bays, peninsulas, and inlets. The same coast-
line viewed from an aircraft will show further detail, and
the detail will mimic the ruggedness, with smaller bays,
peninsulas, and inlets.

Mandlebrot developed the geometry of fractals, which
is short for fractional dimensionals, to define such repeti-
tion mathematically. Fractal geometry has led to the
development of computer-based fractal design tools that
can produce very complex random patterns. The term
fractal is used to describe graphics of randomly generated
curves and surfaces that exhibit a degree of self similarity.
These fractal curves and surfaces emerge in the form of
images that are much more visually realistic than can be
produced with conventional geometric forms (Figure
3.62). In addition, fractal image compression techniques
can be used to solve storage problems associated with
large graphical image files on computers.

3.13 3-D Modeling
Traditionally, the means of communication in the engi-
neering design process was through paper drawings done
by hand. With the availability of CAD tools, these 2-D
technical drawings are produced on computer. More
recently, 3-D modeling software has become available on
increasingly powerful PCs and increasingly inexpensive
engineering workstations (Figure 3.63). Because 3-D
modeling systems create models of the product being
designed, this system offers considerably more possibili-
ties as to how it can be integrated into the design process
than a 2-D CAD drawing does.
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Figure 3.62

Fractal surface
Mountain terrain based on fractal surfaces.
(Courtesy of Gary Bertoline )

Figure 3.63

3-D model
Three-dimensional computer model of a helicopter.
(IBM Gallery Exhibitor.)
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The following section offers an overview of two com-
mon approaches for generating 3-D computer models.

3.13.1 Wireframe Modeling

The simplest 3-D modeler is a wireframe modeler. In
this type of modeler, which is a natural outgrowth of 2-D
CAD, two types of elements must be defined in the data-
base: edges and vertices (Figure 3.64). For the tetrahedron
in the figure, the vertex list contains the geometric infor-
mation on the model. Each vertex is defined by an (X, Y,
Z) coordinate, which anchors the model in space. The
topology of the model is represented by the edge list. The
edge list does not contain coordinate information. The loca-
tion, orientation, and length of an edge must be derived
indirectly, through calculations of the vertices at either end
of the edge. For example, edge E1 consists of vertices V1
and V2. The coordinate locations of V1 (0,0,0) and V2
(1,0,0) indicate that E1 has a length of 1 and is oriented
along the X axis.

Most wireframe modelers support curved edges, as
well as straight edges. Because of the added mathematical
complexity, the curved edges are usually only circular
curves. An example is a cylinder, as shown in Figure 3.65.

The use of curved edges in a wireframe model reveals one
of the deficiencies of a wireframe model as a representa-
tion of a 3-D object. Take the cylinder as an example. The
end faces of the cylinder are represented by single, contin-
uous, circular edges. But a cylinder has no side edges,
making it difficult with a wireframe modeler to connect
the top and bottom faces of the cylinder. The two linear
edges (E5, E6) shown in the figure are artifacts of the
wireframe model and are necessary for maintaining
integrity of the database and for visualizing the model.

Wireframe models also have problems with unique-
ness. Figure 3.66 shows a wireframe model and some of
the possible objects it could represent. In the model, the
lack of information about surfaces gives rise to ambigui-
ties concerning the orientation of the object. The Necker
cube is a classic example (Figure 3.67). Because surface
information is not available, edges that would normally 
be hidden are not, and the orientation is unclear. Some
wireframe modelers have implemented computational
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E1   < V1 , V2 >
E2   < V2 , V3 >
E3   < V3 , V1 >
E4   < V1 , V4 >
E5   < V2 , V4 >
E6   < V3 , V4 >

V1   ( 0, 0, 0)

V2   ( 1, 0, 0)

V3   ( 0, 1, 0)

V4   ( 0, 0, 1)

X

Y

Z

E2

V2

E1

V1

E3

V3

E4

V4

E6

E5

Edge listVertex list

Figure 3.64

Wireframe model
The vertex and edge list of a wireframe model.

E2

V2

E1

V1

E3

V3

E4

V4

E6
E5

X

Y

Z

Circular
Circular
Circular
Circular
Linear
Linear

E1  < V1 , V2 >
E2  < V2 , V1 >
E3  < V3 , V4 >
E4  < V4 , V3 >
E5  < V1 , V3 >
E6  < V2 , V4 >

V1  (–1, 0, 1)

V2  ( 1, 0, –1)

V3  (–1, 5, 1)

V4  ( 1, 5, –1)

TypeEdge ListVertex List

Figure 3.65

A wireframe model using circular and linear edges
Full circles are broken into two arcs to allow them to connect to
other edges.
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routines to calculate and remove hidden edges. Since this
involves calculating surface information that is not inher-
ent in a true wireframe modeler, the process is often slow
and cumbersome.

3.13.2 Surface Modeling

The pressures of wartime production of ships and aircraft
during World War II and the expanding consumer market
after the war led to the development of systems using the
mathematical descriptions of curved surfaces. Parametric
techniques popularized by Steven A. Coons were adopted

as a way of precisely describing the curvature of a surface
in all three dimensions. Surface models define the sur-
face features, as well as the edges, of objects.

Different types of spline curves are used to create surface
patches with different modeling characteristics. For example,
the advantage of Bezier surface patches is that they are easy-
to-sculpt natural surfaces (Figure 3.68). The control points
are an intuitive tool with which the user can work. There are,
however, two disadvantages to Bezier patches. First, they do
not provide local control; a change in one control point
affects the shape of the whole patch, and could alter the edge
connecting two patches together. Figure 3.69 shows an
example of two patches that are connected (there is no gap
between them), but without the level of continuity necessary
to create a smooth surface. The second disadvantage is that it
is hard to calculate control points that will allow the patch to
pass through already-existing points in a model, which
means it is not possible to control the exact location of the
patch. This reduces the precision of the model.

In contrast, B-spline patches allow local control; mov-
ing one control point does not affect the whole surface.
With B-splines, it is much easier to create surfaces
through predefined points or curves. NURBS surfaces use
rational B-splines, which include a weighting value at
each point on the surface. The weighting value allows
some points to have more influence over the shape of the
curve than other points. This means that a wider variety of
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Figure 3.66

Example of a wireframe model lacking uniqueness
The same edge and vertex list can describe different objects,
depending on how the faces are interpreted.

u v

P2

P1

P3

P4

Q2

Q1

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10 Q11
Q12

( ui , vi 
)

Figure 3.68

A Bezier bicubic surface patch
The patch consists of four connected Bezier curves and 12 con-
trol points.

Figure 3.67

A wireframe model with an ambiguous orientation: the
Necker cube
Which face is in front and which is in back?
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curved surfaces are possible than with regular B-splines.
Because NURBS surfaces can also precisely describe
conic surfaces, they are gaining popularity in many tasks
previously handled by other types of 3-D modelers.

One general weakness of surface modelers is their
inability to handle topology. For example, if you have a
series of patches that form a closed-volume model and
you “drill a hole” in the model, you will pass through an
infinitely thin surface into a void, for which no informa-
tion is available. To handle this situation, the user or the

system must cover over the inside of the hole. Some sur-
face modelers simply do not have the flexibility to make
this sort of topological modification easily.

As mentioned earlier, there are times when surface
modeling systems are invaluable. Precise, mathematically
defined curved surfaces are a must in the aerospace, auto-
motive, and shipbuilding industries. In many cases, infor-
mation about the surface of the object is the most critical
element in manufacturing the product, and the surface
information used in the model can often be used directly
by analysis and manufacturing software tools.

3.14 Summary
This chapter introduces you to the geometry commonly
used in engineering design graphics. Since surface modeling
is an important part of modern engineering design, modern
techniques and geometric forms used with CAD systems are
described. In addition, geometric construction techniques
useful in creating some types of 2-D engineering geometry
are included. Because geometry provides the building
blocks for creating and representing more complex products
and structures, the information presented in this chapter will
be used throughout the remaining chapters in this text.
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Figure 3.69

Two discontinuous surface patches
The crease between the surface patches reveals the discontinuity.

Questions for Review
1. Define engineering geometry and describe its

importance to engineering design.

2. Describe how coordinate space relates to engi-
neering design.

3. Explain the right-hand rule, using sketches.

4. How is a curved line different from a straight line?

5. Describe an engineering application for a parabola
and for a hyperbola.

6. What is the difference between a plane and a sur-
face?

7. List six quadrilaterals.

8. Define concentric circles.

Goals Review
Now that you have completed this chapter, you should be able to accomplish the goals listed below. If you need further
review, you can refer to the chapter section numbers shown with each goal.

1. Describe the importance of engineering geometry in the
design process. Objectives and Overview

2. Describe coordinate geometry and coordinate systems and
apply them to CAD. Section 3.3

3. Explain the right-hand rule. Section 3.3.1
4. List the major categories of geometric entities. Section 3.4
5. Explain and construct the geometric conditions that occur

between lines. Section 3.5.2 Lines
6. Explain and construct tangent conditions between lines and

curves. Section 3.5.3

7. Explain and construct conic sections, roulettes, double-
curved lines, and freeform curves. Sections 3.6, 3.7, 3.8,
and 3.9

8. List and describe surface geometric forms. Section 3.12
9. Describe engineering applications of geometry. Sections

3.6.1 and 3.6.2
10. Describe two types of 3-D modeling. Section 3.13
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All sketches of each part of the stapler should be completed
along with a parts list. The plastic housing that encloses the
metal parts that actually do the stapling are quite complex
giving the stapler both aesthetic and functional design ele-
ments. Redesign the plastic housing so that the stapler is not

only aesthetically pleasing but has improved functionality by
allowing the stapler to stand on its hinged end in addition to
its current flat base. Create design sketches of your new
design ideas; then refine the design you select through more
refined sketches.

3-D Modeling Project
Chapter 3: Stapler Modeling Project

9. Define a tangent.

10. Describe an engineering application for an ellipse.

11. List and sketch four conic sections.

12. List and sketch four regular polyhedrons.

13. List and sketch four polygonal prisms.

14. Define a warped surface.

15. List the major categories of geometric forms.

16. Sketch and label the various conditions that can
occur between two lines.

17. Sketch and label the various tangent conditions that
can occur between lines and curves and between
two curves.

18. Sketch a circle and label the important parts.

19. List and define freeform curves.

20. Describe fractals.

21. What is the minimum information needed to define
a true wireframe model? Is there enough informa-
tion in a wireframe model to determine which
edges are hidden?

22. What are the advantages and disadvantages of the
three types of curves used to make surface patches?
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Problems

1.13

ø .50

ø 1.50

ø 3.00

1.75

.63 65°

ø 1.50
.25

.38

Ratchet
Wheel

(15 Teeth) 

Detent
Detent
Pivot

ø 3.00 TYP. 

ø .50

ø 1.001.36

ø 2.75

1.50 1.40

Figure 3.70

Ratchet and detent

The CD-ROM contains starter files for most of the draw-
ing problems in either your native CAD file format or as a
DXF file which can be imported into most CAD software
programs. If sketching the problems, use either paper rec-
ommended by your instructor or the workbook that
accompanies this text.

3.1 Using rectangular graph paper, draw or sketch the X
and Y axes for the Cartesian coordinate system, then
locate point A at 2,3; point B at –2,5; point C at
–3,–2; and point D at 4,–1. 

3.2 Using the same axes constructed in Problem 4.1,
construct line AB using endpoints –1,–2 and –3,–4.

3.3 Add to the axes in Problem 3.1 a line MN with the
first endpoint at 1,1 and the second endpoint at 45
degrees and 1′′ from the first endpoint.

3.4 Using rectangular graph paper, construct the X and Y
axes, then draw a figure, using the following absolute
coordinate values:

0,0

3,0

3,2

0,2

0,0

3.5 Using rectangular graph paper, construct the X and Y
axes, then draw a figure, using the following relative
coordinate values:

0,0

4,0

0,3

–4,0

0,–3

3.6 Using isometric grid paper, construct the X, Y, and Z
axes. Reference Figure 3.4. Using the right-hand
rule, place points at the following locations:

1. 0,0,0

2. 4,0,0

3. 4,2,0

4. 0,2,0

5. 0,0,2

6. 4,0,2

7. 4,2,2

8. 0,2,2

Connect points 1–2, 2–3, 3–4, 4–1.

Connect points 5–6, 6–7, 7–8, 8–5.

Connect points 4–8, 3–7, 1–5, 2–6.

What geometric solid is produced?

3.7 (Figure 3.70) Draw the ratchet and detent, using
the given dimensions.

3.8 (Figure 3.71) A Geneva stop mechanism has a dri-
ving wheel that turns at a constant speed and a driven
wheel that turns intermittently. The driven wheel
rotates one-fourth turn every time the drive pin enters
and leaves a slot. Begin the drawing by constructing
triangle ABC, then locate point P and center line CP.
After the drawing is complete, measure angle X.

3.9 (Figure 3.72) The piston is driven by the connect-
ing rod, which rotates on the crankshaft. As point A
moves in a circular path from A0 to A12, the piston
pin B moves in a straight line from points B0 to
B12. Create a displacement curve by dividing the
semicircles into 12 equal parts, then locate point B
at each of the 12 intervals, and finally transfer that
displacement to the diagram.

3.10 Create an A-size drawing sheet, then construct a
helix from a right circular cylinder that has a 2′′
diameter base and is 4′′ high.

3.11 (Figure 3.73) Draw the cam arm, using the given
dimensions and calculating the missing ones. The
curve is made of five tangent circular arcs. The rise
is the change in distance from the center of the hole
in the cam arm.

3.12 (Figure 3.74) Draw the slip cover, using the given
dimensions.
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Figure 3.71

Geneva stop mechanism
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Figure 3.72

Piston, connecting rod, crankshaft, and displacement curve
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Figure 3.73

Cam arm

1.51
2.37

3.63

5.25

.45

4X R .50

R .50R .25

R 5.00

1.88

R 4.63

3.25

2.50

1.75

R .38

1.38

2X R .632X R .38

2X R .87

2X R .25

4X R .38

6.88

7.63

Figure 3.74

Slip cover
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3.13 (Figures 3.75 through 3.84) Draw the part, using
the given dimensions.

3.14 (Figure 3.85) Create wireframe or solid models by
sweeping the profiles shown in the figure using a
scale assigned by your instructor.

Do the following with each of the profiles:

a. Sweep linearly 5 units along the +Z axis.

b. Sweep linearly along the vector (2,–3,5).

c. Sweep 360° about the Y axis.

d. Sweep 360° about the X axis.

e. Sweep 90° about the +X axis.
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Offset pipe
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Butterfly spacer
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Split guide
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f. Sweep 270° about the –Y axis.

g. Sweep 360° about a Y axis offset 2 units in +X
direction.

h. Sweep 180° about an X axis offset 3 units in +Y
direction.

i. Sweep the profile about 2 different axes to create
two objects. Combine the two objects to create a
new single object.

7.20
4X R 5.00

R 1.40

.50

FILLETS & ROUNDS
R .20 U.O.S.

7.20

1.00

R 4.20

R 3.00ø 2.80

3.60

3.60

Figure 3.80

Offset wrench
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4X R .63

2.50

60°

R .75

R 2.50

FILLETS & ROUNDS
R .38 U.O.S.

2.13
2.25

5X ø .75

Figure 3.81

Centering plate
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60°
45°
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Variable guide
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Harness guide
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Figure 3.84

Transition
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Figure 3.85

Profiles to be swept
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The following classic problems were taken from Engi-
neering Drawing & Graphic Technology, 14th Edition, by
Thomas E. French, Charles J. Vierck, and Robert Foster.
All fillets and rounds 0.125 inches or 2 mm unless other-
wise indicated. Sketch or draw with CAD the 2-D draw-
ing problems shown in the figures.

1. Rod guide Fig. 3.86

2. Eyelet Fig. 3.87

3. Spline lock Fig. 3.88

4. Pulley shaft Fig. 3.89
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1.50 

.50 
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Figure 3.86

Rod guide
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Eyelet

Classic Problems
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Pulley shaft
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Spline lock

ber22098_ch03.qxd  4/18/01  6:41 PM  Page 184


