
November 8, 2001 12:08 kam23051_ch01 Sheet number 1 Page number 2 cyan black

2

CHAPTER

1 WHAT IS PROGRAMMING?

CHAPTER PREVIEW

Before writing programs in the Java language, we demonstrate the
thought processes and problem-solving techniques necessary for
programming. We present a problem—leading a mechanical mouse
through a maze—and work through the design of an algorithm to
solve the problem, and a program to implement the algorithm. We
discuss the importance of object-oriented programming. To pro-
vide some grounding in the operation of computers, we discuss the
architecture of computers, the representation of various kinds of
data, and the mechanics of entering and running Java programs.

November 8, 2001 12:08 kam23051_ch01 Sheet number 2 Page number 3 cyan black

3

“Again, it [the Analytical Engine] might act upon other
things besides numbers, were objects found whose
mutual fundamental relations could be expressed by
those of the abstract science of operations, and which
should be also susceptible of adaptations to the action of
the operating notation and mechanism of the engine
…Supposing, for instance, that the fundamental relations
of pitched sounds in the science of harmony and of
musical composition were susceptible of such
expression and adaptations, the engine might compose
elaborate and scientific pieces of music of any degree of
complexity or extent.”

—Lady Ada Augusta, Countess of Lovelace
Commenting on Babbage’s Analytical Engine

In: Scientific Memoirs, Selections from the Transactions of
Foreign Academies and Learned Societies and from

Foreign Journals, edited by Richard Taylor, F.S.A., Vol III
London: 1843, Article XXIX.

The popular perception of the computer is as an all-powerful entity that, with
seemingly little human effort or input, is responsible for running business, gov-
ernment, science, and many more mundane aspects of our lives. But a computer
is no more than an inanimate collection of wires and silicon, organized so that it
can quickly perform simple operations such as adding numbers. So how does it
come to have such power? What sleight of hand transforms this box of electrical
components into a powerful tool?

Programming performs the magic. A program is a set of directions that program
tells the computer exactly what to do; a program thus is the medium used to
communicate with the computer. Programs can be written in many programming programming

languagelanguages—languages for specifying sequences of directions for the computer.
In this book we use the language Java.

Our first job in programming is to clarify the problem. Exactly what is
required? How can the job be broken down into manageable pieces? What
algorithm—sequence of steps—is appropriate to solve the problem? How can algorithm
this algorithm be turned into a program? Does the program work? Is it written
as clearly as it can be? Is it fast? Can it be changed easily if needed? Does it
demand too great a fraction of the computer’s resources? These are the questions
confronting the computer programmer, the person who designs and writes the computer

programmerprogram.

November 8, 2001 12:08 kam23051_ch01 Sheet number 3 Page number 4 cyan black

4 CHAPTER 1 WHAT IS PROGRAMMING?

1.1

Mechanical Mouse in a Maze

We start learning to program by analyzing a problem that contains, in miniature,
the basic components of any programming problem. We want to give instructions
to a mechanical mouse so it can get through a maze. For our purposes, a maze is
a rectangular arrangement of square rooms; adjacent rooms may be separated by
a wall, or the boundary between them may be open. We place the mouse facing
the entrance to a maze in which solid lines represent walls between rooms and
dotted lines represent open boundaries:

entry

exit

Why
bother?

The mouse is like a computer in that it knows how to follow only certain
very simple instructions: step forward into the next room, turn right
in place, or turn left in place. We must program the mouse by writing the
precise instructions it must follow to get through the maze. For this simple maze,
the instructions are

step forward;
turn right;
step forward;
turn left;
step forward;
turn left;
step forward;
turn right;
step forward;

This sequence of instructions is comparable to a computer program.
What happens if the maze has a different configuration? For example, what

if we had the following?

entry

exit

This is a
snap!

November 8, 2001 12:08 kam23051_ch01 Sheet number 4 Page number 5 cyan black

1.1 Mechanical Mouse in a Maze 5

Then our preceding program would not work correctly, but the simpler program
step forward;
step forward;
step forward;

would work.
It is easy to write out instructions to the mouse for any specific maze as long

as we know the maze’s internal configuration. But what if the inside of the maze
is hidden from view, beneath an opaque cover? All we see is a mouse-eye view
of things:

?

Now our problem is to give the mouse proper instructions to get it through
any maze. In fact, we have to approach the problem from a completely different
perspective. In the language of computer programming, it is our task to figure out
an algorithm to solve this task—a general method precise enough to be turned algorithm
into a mouse program — and then to write the corresponding program, the exact program
sequence of mouse instructions.

The first step in computer programming always is to make the problem as
precise as we can. Where is the mouse initially placed with respect to the maze?
What should happen if the maze has no exit? We’ll assume the mouse is placed
in front of the entrance to the maze so that a single step forward instruction
takes it into the maze. Our instructions to the mouse must get it out the exit of
the maze or back out the entrance if there is no path to the exit or no exit at all.
This problem, of course, is impossible to solve unless the mouse is capable of
examining the inside of the maze and making decisions based on what it finds as
it goes along; the three instructions step forward, turn left, and turn
right are not sufficient. The mouse, however, also can look forward myopically
to see whether there is a wall immediately in front of it, and it can detect when it
is inside the maze. These, then, are five instructions that the mouse can follow:

step forward
turn right
turn left
facing a wall?
inside the maze?

We are limited to these instructions to get the mouse through the maze.
First, we must design an algorithm for getting through an unspecified maze,

and then we need to express the algorithm in terms that the mouse can follow.
For the mouse in the maze, the algorithm we will use is a familiar trick for going
through a maze:

Have the mouse walk hugging the wall to its right.

In our first example above, the mouse would travel like this:

November 8, 2001 12:08 kam23051_ch01 Sheet number 5 Page number 6 cyan black

6 CHAPTER 1 WHAT IS PROGRAMMING?

entry

exit

I can follow
this path.

Our first job is to convince ourselves that this algorithm actually works.
As is often the case, this is not obvious. A careful argument would hinge on the
observation that the mouse never hugs the same wall twice. We will not prove
this, but you should run the algorithm on enough examples to convince yourself.

QUICK EXERCISE
1.1

Follow this algorithm on the second example above. (Note that the path given
by this algorithm is longer than the path we chose for this maze, which was just
to walk straight ahead from entry to exit. We never said this algorithm would
always find a good path.)

QUICK EXERCISE
1.2

What does this algorithm do if there is no separate exit from the maze?

QUICK EXERCISE
1.3

An alternative algorithm would be to have the mouse walk hugging the wall to its
left. Give a maze for which this algorithm gives a better result—that is, a shorter
path through the maze—than our “hugging the wall to the right” algorithm. Then
give a maze for which this algorithm gives a worse result.

We have an algorithm—a precise method that will always get us through
the maze—but that is not enough. We need to express this algorithm with the
set of five instructions available to our mouse. This is always the situation in
computer programming: First we need to discover an algorithm, then we need
to express the algorithm using the limited repertoire of actions that the computer
has available to it.

For example, the algorithm directs us to keep the wall to the mouse’s
right, but the only instruction the mouse understands about walls is facing
a wall?. How can it check if there is a wall to its right? It must turn right
first and then ask whether it is facing a wall. If it is, then it originally had a wall

November 8, 2001 12:08 kam23051_ch01 Sheet number 6 Page number 7 cyan black

1.1 Mechanical Mouse in a Maze 7

to its right, so it should turn back. Now the question is, Can it move forward? If
it is facing a wall, then it has a wall to its right and a wall in front, and it should
keep turning left to find an opening. Thus, the instructions to tell the mouse to
find an opening with a wall to its right are

turn right;
if facing a wall? then

turn left and if facing a wall? then
turn left and if facing a wall? then

...

continuing as long as necessary—that is, turn right and then keep turning left
until no wall is in front. Since the mouse got into this room to begin with, there
must be at least one opening; eventually the preceding instructions will have it
facing an opening with a wall to its right.

We’re not done, of course. We’ve figured out how to perform one part of
the algorithm—finding an exit from any room in the maze, being sure that a wall
is to our right—but not the entire algorithm. Before finishing it, we introduce
another aspect of computer programs: their notation. If our mouse spoke Java, it
would not understand the above set of instructions, because they are not in Java
notation. Instead, we would—and will, from now on—write it as

turn right;
if (facing a wall?) {

turn left;
if (facing a wall?) {

turn left;
if (facing a wall?) {

...
}

}
}

omitting the words then and and, and using { and } to indicate the grouping of
instructions and (and) to denote a question or condition.

We still haven’t said what the ... means. It means to continue with the
same instructions while the mouse is facing a wall, stopping only when the mouse
is not facing a wall. So we write it instead as

turn right;
while (facing a wall?) {

turn left;
}

which means, “after turning right, repeat the process of checking whether you’re
facing a wall, and if you are, turn left.” The distinction between while and if is
that while means “continue checking as long as” and if means “check the current
state of things just one time.”

After following these instructions, the mouse will be facing an opening. In
other words, it can now step forward (without crashing into a wall).

November 8, 2001 12:08 kam23051_ch01 Sheet number 7 Page number 8 cyan black

8 CHAPTER 1 WHAT IS PROGRAMMING?

turn right;
while (facing a wall?) {

turn left;
}
step forward;

This is all there is to making a single move. However, we must consider one
small detail. What happens if the mouse reaches the end of the maze, that is,
manages to exit the maze? What is the meaning of the code when the mouse is
outside the maze? The mouse must be able to detect when it is outside the maze
and simply do nothing if asked to make a move in that circumstance:

while (inside the maze?) {
turn right;
while (facing a wall?) {

turn left;
}
step forward;

}

This raises another small problem. What happens with the very first move?
The mouse cannot execute the code just shown, since initially it is outside
the maze. The solution is that the mouse’s very first move is simply step
forward, and subsequent moves are given by the preceding code. Here is the
final version of the program:

1 step forward;
2 while (inside the maze?) {
3 turn right;
4 while (facing a wall?) {
5 turn left;
6 }
7 step forward;
8 }

How simple and elegant this program is! It reads almost like English, but it
expresses exactly how the mouse (with its limited abilities) can be made to trace
its way, step by step, through a maze by keeping its right paw on the wall.

Let’s follow the mouse’s trip for a bit to make sure we understand the
algorithm. The first few steps are shown in Figure 1.1. The mouse begins by
following the first instruction and steps forward into the entry (a). Since it is
inside the maze, the mouse follows the next group of instructions, starting by
turning right (b). It is not facing a wall (that is, its nose is not touching a wall),
so it doesn’t turn left, but instead steps forward (c). It is still inside of the maze,
so it again follows the group of instructions between lines 3 and 7. First, it turns
right (d). Since it is facing a wall, it turns left (e) and checks again; still facing
a wall, it turns left again (f) and checks again; still facing a wall, it again turns
left (g). Finally, it is no longer facing a wall, so it skips to line 7 and steps
forward (h).

November 8, 2001 12:08 kam23051_ch01 Sheet number 8 Page number 9 cyan black

1.1 Mechanical Mouse in a Maze 9

(a) Step forward (b) Turn right

(c) Not facing a wall; move forward (d) Turn right

(e) Facing a wall; turn left (f) Facing a wall; turn left

(g) Facing a wall; turn left (h) Move forward

FIGURE 1.1 The start of the mouse’s trip through the maze.

November 8, 2001 12:08 kam23051_ch01 Sheet number 9 Page number 10 cyan black

10 CHAPTER 1 WHAT IS PROGRAMMING?

In the end, the mouse follows the path shown by the dashed line in the
following picture:

entry

exitI am one
clever
rodent!

QUICK EXERCISE
1.4

Complete the next eight steps in the narrative of the mouse’s trip that was begun
in Figure 1.1.

The mouse takes a rather circuitous route to the exit, going through every
room once and through three of the rooms twice! We could have taken a different
approach to this problem, leading to a different, possibly shorter, path through
the maze. With programming, the only limit is our ingenuity.

This program is the result of breaking down the problem at hand into a
workable algorithm. The algorithm was then expressed using the five simple
instructions available to our mechanical mouse. By expressing the algorithm in
the very precise syntax of Java, we obtained a program.

QUICK EXERCISE
1.5

Rewrite the maze-walking program using the “walk hugging the wall to your left”
algorithm.

This example illustrates what beginners find to be perhaps the most difficult
and even disconcerting aspect of programming: It requires a degree of precision
quite unknown in ordinary human activities. The algorithm must be correct and
carefully designed; in real life, algorithms are rarely written with the same level
of precision—anyone who has ever tried to follow a recipe that says “Season to
taste” knows that. The program—the written expression of the algorithm—must
be written in the language that the mouse understands, with parentheses, brackets,
semicolons, and so on, in just the right places.

In this book, we teach you how to design algorithms and how to express
them in the Java language. To beginners, mastering the syntax of Java seems
like the hard part, but as you get more practice, the syntax will become second

November 8, 2001 12:08 kam23051_ch01 Sheet number 10 Page number 11 cyan black

1.2 Object-Oriented Programming 11

nature. The development of algorithms, on the other hand, is a deep intellectual
challenge and always will be. Indeed, the study of algorithms is one of the major
research areas in computer science. This book contains many algorithms. Most
are simple, like the mouse’s algorithm, but a few are famously ingenious (e.g.,
the “quicksort” algorithm, page 550), and some are even historic (e.g., Gaussian
Elimination, page 558).

While you are learning the Java syntax and learning how to design algo-
rithms for a variety of problems, we hope you will develop a sense of programming
style. Style is the intangible quality that makes programs easy to read, elegant, and
even admirable. Donald Knuth of Stanford University, one of the leading prac-
titioners of the art of algorithm design, has written, “The chief goal of my work
as educator and author is to help people learn to write beautiful programs.”1 We
cannot claim that you will be writing beautiful programs when you have finished
this book, but we hope that you will at least understand what Knuth means.

1.2

Object-Oriented Programming

Java is one of the modern programming languages that encourages the use of
object-oriented programming (OOP), which is a way of organizing programs. In object-oriented

programmingobject-oriented programming, a program is structured as a collection of classes,
where each class describes a type of object. The objects represent the entities classes
naturally occurring in the program, like the mouse and the maze.

Every Java program is nothing but a collection of classes. When a Java pro-
gram runs, it uses these classes to create a collection of objects that interact with objects
one another by sending messages. For example, if we wrote the mouse-in-the- messages
maze program in object-oriented form, the mouse would be an object (Figure 1.2),
and so would the maze. The mouse would exchange messages with the maze to

Where I am: (3, 2)
Where I'm heading: North

Where are you?

Move one step.

FIGURE 1.2 A mouse object receiving messages.

1Computer Programming as an Art, 1974 ACM Turing Award Lecture.

November 8, 2001 12:08 kam23051_ch01 Sheet number 11 Page number 12 cyan black

12 CHAPTER 1 WHAT IS PROGRAMMING?

I am in room
(3, 1) facing east.

Is there a wall
in front of me?

Yes.

FIGURE 1.3 The mouse in the maze in object-oriented form. The al-
gorithm is the same as before, but now the mouse and
the maze are both objects that communicate by sending
messages.

I'm Speedy!
Where I am: ?
Where I'm heading: ?

I'm Greedy!
Where I am: ?
Where I'm heading: ?

Create new object

New

FIGURE 1.4 Relationship between a class and its objects.

determine where it can move, as illustrated in Figure 1.3. Note that the mouse
still follows an algorithm—in this case, the “wall to the right” algorithm—but
the way we think about and organize the program is quite different.

The main job of the Java programmer, then, is to describe the objects that
need to be created when the program runs. This is done by writing a class for
each type of object, which we can think of as an assembly line for that type of
object. The relationship between classes and objects is illustrated in Figure 1.4.
For the mouse in the maze, the programmer would write a Mouse class and a
Maze class. (It is conventional in Java to capitalize the names of classes.)

To be more specific, the Java programmer would create two classes by
entering the following:

public class Mouse {
we’ll see what goes inside the class later in the book

}

public class Maze {
ditto

}

November 8, 2001 12:08 kam23051_ch01 Sheet number 12 Page number 13 cyan black

1.3 Computers and Data Representations 13

Then, in a different part of the program, the programmer would write something
like this:

Mouse righty = new Mouse(); ←− create Mouse object

Maze bigmaze = new Maze(); ←− create Maze object

righty.enter(bigmaze); ←− tell mouse to enter maze

righty.getout(); ←− tell mouse to find a way out

These four lines, or statements, are executed in sequence. The first two
create the object described by the classes we defined above and give the objects
the namesrighty andbigmaze, respectively. The third line “sends theenter
message” to the mouse object and provides the maze as an argument; this tells
the mouse object to enter the maze. The last line tells the mouse to find a way
out of the maze.

The use of object-oriented structure is pervasive in Java. This structure has
many advantages: It makes it easy to create multiple objects of the same type; for
example, we could have two mice finding their way through the maze at the same
time. It also makes it easy to create a variety of similar objects; for example, we
could create one kind of mouse that follows the “wall to the right” algorithm and
another that follows the “wall to the left” algorithm, without having to rewrite the
first mouse class completely. Using object-oriented programming helps to make
programs simpler to understand and more reliable, because it prevents one kind
of object from knowing more than necessary about the structure of other kinds of
objects. We will begin using objects in the very first real Java program we write
in Chapter 2, and very shortly after that we will begin writing our own classes.

1.3

Computers and Data Representations

Although computers are amazingly complicated machines, the basic principles
upon which they operate are fairly simple. Knowing something about these
principles will help you understand how programming languages such as Java fit
into the picture. It is especially useful to know something about how the computer
represents different types of data: text, pictures, sound, and so on.

1.3.1 Bits, Bytes, and Binary Numbers

To a computer, everything is a number. Numbers are used to represent all kinds of
data: pictures, sounds, characters, and, of course, numbers themselves. Numbers
are also used to represent your program inside the computer as the computer
executes it.

Throughout this book, we use the decimal representation of numbers, just
as we all do in everyday life. Recall that our normal notation for numbers is called

November 8, 2001 12:08 kam23051_ch01 Sheet number 13 Page number 14 cyan black

14 CHAPTER 1 WHAT IS PROGRAMMING?

Base 10: 3

×
102

 9

×
101

 710

×
100

 = 30010

Base 2:

+ 7109010 +

 = 25610

 = 39710

+ 81012810 + 410+ 110+

 1

×

 28

25610

=

 1

×

27

12810

=

 0

×

26

0

=

 0

×

25

0

=

 0

×

24

0

=

 1

×

23

810
=

 1

×

22

410

=

 0

×

21

0

=

 1

×

20

110

=

FIGURE 1.5 Positional notation.

positional notation. The value of each digit depends upon its position within the
number. Thus, the four numerals 5427 represent the value 5× 1000+ 4× 100+
2 × 10 + 7. In general, the digit that is i positions from the right is multiplied
by 10i .

Numbers in positional notation are so convenient that their invention is
considered one of the greatest technical innovations in human history. Base 10,
on the other hand, is a mere accident. Any number can be used instead of 10.
In building computers, binary, or base 2, representation is most efficient. Inbinary
base 2, there are two digits—0 and 1—which are called bits (for binary digit). Inbits
general, the digit that is i positions from the right is multiplied by 2i . For example,
the number 1010100110011 in base 2 has the value: 1 × 4096 + 0 × 2048+
1×1024+0×512+1×256+0×128+0×64+1×32+1×16+0×8+0×4+1×2+
1 × 1, which happens to add up to the same number as 5427 in base 10. The
translation from binary to decimal is further illustrated in Figure 1.5.

QUICK EXERCISE
1.6

Convert the following binary numbers to decimal:

1. 1010101

2. 1010110

3. 1111111

The use of binary rather than decimal in computers is confusing at first, but is
not of fundamental significance. More important is that numbers in computers are
of fixed size. In most computers, each integer is restricted to 32 bits (commonly
called a word). If you do the conversion (1 × 231 + · · · + 1 × 20), you will seeword

November 8, 2001 12:08 kam23051_ch01 Sheet number 14 Page number 15 cyan black

1.3 Computers and Data Representations 15

Central
processing

unit
(CPU)

Main
memory

Input
keyboard
camera
CD-ROM drive

Output
monitor
printer

…
…HardHard

diskdisk

FIGURE 1.6 Block diagram of a computer. Computation is done by
the CPU working with program and data in main memory;
data move between these components at extremely high
speed. New programs and data can be brought in from
the hard disk; it is much larger and much slower than the
main memory.

that this allows for numbers ranging from 0 up to a maximum of 4,294,967,295.
This range is quite large enough for most purposes, so the restriction is rarely a
problem in practice. However, it can result in some puzzling results on occasion.
An example is given in Chapter 2.

Computer memories are commonly divided into 8-bit numbers called bytes. bytes
Thus, a word consists of 4 bytes. In describing the size of computer memories,
one commonly uses the terms megabyte (220, or a little more than a million, bytes) megabyte
and gigabyte (230, or a little more than a billion, bytes). gigabyte

1.3.2 Computer Organization

Internally, a computer consists of three major components: a central process-
ing unit, or CPU , that does all the actual work of executing the program; a CPU
main memory that holds all the data and the program while it is executing; and main memory
a long-term storage device, usually a hard disk, that holds the programs that are hard disk
not currently executing and the data that are not currently being used. See Figure
1.6. (Think of the CPU as an office worker, the main memory as the worker’s
desk, and the hard disk as the items on her or his shelves. All real work is done
while sitting at the desk, but items are frequently pulled down off the shelves and
placed back onto them.) There are numerous additional parts, called input/output input/output

devicesdevices, that let the computer communicate with the outside world (without which
the computer is pretty useless). The three we’ve mentioned are the key internal
components.

The main memory, unlike an average desktop, is not a disorganized collec-
tion of documents. Rather, it is a long list of binary numbers; in most modern
computers, it is a list of bytes. Each byte can have a different value, and the
CPU can tell the memory to change the value of any byte in memory. To do this,

November 8, 2001 12:08 kam23051_ch01 Sheet number 15 Page number 16 cyan black

16 CHAPTER 1 WHAT IS PROGRAMMING?

1 Fetch next work in
main memory

2 Execute instruction
(“01100111”)

3 Go back to 1 and
fetch next word

CPU Main memory

…
…

0 1110011
0 1010110
0 0100011
1 0000011

FIGURE 1.7 The fetch/execute cycle. The CPU repeats this cycle, fetch-
ing its instruction from the next memory location, until the
program is finished.

each byte has an address, namely, its position in the memory. Thus, the CPU canaddress
direct the main memory to change byte 345 (the 346th byte in memory, since the
first address is 0) to 45 (that is, 00101101). Location 345 will then continue to
hold number 45 until the CPU tells it to change to something else. The CPU can
also direct the main memory to return to it the number stored at a given location
(just as you recover the value stored in the memory of a calculator). On most
computers, the CPU actually reads and writes entire words (groups of 4 bytes) at
once; this is more efficient than reading and writing individual bytes.

Nowadays, main memories are quite large. Their sizes are usually measured
in megabytes. Thus, a 64-megabyte computer has 64× 220, or about 64 million,
bytes, or about 16 million words, or about 512 million bits. Disk memories are
much larger. New personal computers (PCs) have disks that hold at least 10
gigabytes, about 10 billion bytes.

The action of the computer when it runs a program can be summarized
roughly as follows: First, the program and all the data it uses must be loaded
from the hard disk into the main memory. The program is placed in one part of
the main memory and the data are placed in another; keep in mind that both the
program and the data are nothing but a sequence of numbers. The CPU goes to
the location of the first word of the program and reads that word. Each different
number—that is, each different pattern of bits—tells the CPU to do something
different. It may tell the CPU to load a number from a certain location in the
data area and increment it, or to place a character at a certain location on the
computer’s screen, or to read a number from the disk and place it into a certain
location in memory. The CPU performs that action and then goes to the next
location in the program area of memory, reads that number, and executes it. This
is known as the fetch/execute cycle (Figure 1.7).fetch/execute cycle

Computers can do amazing things, but only by performing many, many tiny
actions, one at a time. Even relatively inexpensive home computers nowadays
can run through the fetch/execute cycle about 100 million times per second.

November 8, 2001 12:08 kam23051_ch01 Sheet number 16 Page number 17 cyan black

1.3 Computers and Data Representations 17

The correspondence between the number in a word and the action that the
CPU takes when it sees that number is determined by the type of CPU. It is called
the machine language of the processor. All PC-compatible machines have the machine language
same machine language, based on the Intel x86 line of CPUs,2 so programs can
be run on any such machine regardless of the manufacturer. On the other hand,
Apple Macintoshes have been built with two different processors. Programs from
earlier Macs, based on the Motorola 680x0 CPUs, will not run on today’s Macs,
which use the Motorola PowerPC. None of the programs, from either generation,
will run on a PC-compatible computer. It is possible to write programs directly
in machine language, but this is much more difficult than writing them in Java,
and, of course, a program written in machine language can run on only one type
of computer.

The main thing to remember is that only programs in machine language
can be executed by the computer, which raises the question: How does a Java
program become a machine language program? We discuss that in Section 1.4.

1.3.3 Data Representations

You might ask, If all the CPU can do is to take numbers and perform arithmetic
operations on them, how can it print documents, or play music, or perform com-
puter animations? What do documents or music or animated pictures have to do
with numbers?

Indeed, in the early years of computation, all that computers were ever used
for was numerical calculations. But it gradually became clear that numbers could
be used to represent just about any kind of information:

Text. This is easy: Just choose a correspondence between numbers and charac-
ters. We can represent an entire book in memory by placing the characters
of the book in sequence. Furthermore, since normal writing in English uses
fewer than 256 characters (including letters, digits, and all the usual punc-
tuation marks), we can represent each character in a single byte. (Shake-
speare’s complete works have a total of about 5 million characters; at 1 byte
per character, we can easily fit them into the main memory of a modern
computer; in fact, we could fit 10 copies or more.)

The most common code for characters used in English is ASCII, an abbreviation
of American Standard Code for Information Interchange. Look up “ASCII” on
the Internet. What are the codes for the characters “a”, “z”, “A”, “Z”, “0”, “9”,
and “&”?

QUICK EXERCISE
1.7

2Actually, the machine languages for the newer processors, such as the Pentium 4, are somewhat
different from the machine languages of earlier processors, such as the 8086. Programs being written
today may not run on CPUs of an earlier generation.

November 8, 2001 12:08 kam23051_ch01 Sheet number 17 Page number 18 cyan black

18 CHAPTER 1 WHAT IS PROGRAMMING?

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

 = 8, 4, 254, 255, 254, 8, 4

FIGURE 1.8 Representation of black-and-white pictures using numbers.
Here, an arrowhead is drawn on a screen with 7 × 8 = 56
pixels. (Real screens have sizes closer to 1000 × 1000 =
1,000,000 pixels, so they need many more numbers and
produce much better images.)

Pictures. Most readers probably already know the answer to this one. A picture
can be reduced to a collection of dots, or pixels. This is how computerpixel
screens and computer printers work. In the simple case of a pure black-
and-white picture, each pixel is either black or white, so it can be represented
by a single bit. See Figure 1.8. A 1000 × 1000 image, which is quite a
detailed image, can thus be represented in 1,000,000 bits, or 125,000 bytes.
If the image is “gray scale” or color, it will need several bits per pixel; so the
memory requirement will go up substantially, but the principle is the same.
Modern digital cameras represent pictures using as many as 3000× 2000,
or more than 6 million, color pixels.

Animations. Since an animation is just a sequence of pictures, we can represent
animations easily. Memory space will be stretched, and we might have
to apply some cleverness to “compress” the images. But the point is that
animations can be represented using numbers (Figure 1.9).

Sounds. You have undoubtedly seen pictures of sound waves (Figure 1.10a).
Such curves can be digitized—turned into sequences of numbers—very
easily: Just record the numerical values at regular intervals. If the inter-
val is small enough, you can get as faithful a copy of the curve as you
could possibly want. Hardware devices known as analog-to-digital (A/D)
converters can perform this sampling (Figure 1.10b), and digital-to-analog
(D/A) converters can convert this sequence of numbers back to the wave
and thereby reproduce the sound. This is exactly how digital music formats
like compact disks (CDs) work.

Data stored on your computer are kept on the hard disk in files. Each filefiles
is a collection of bytes, with a name and a type. See Figure 1.11. Thus, a file
containing a picture might be called my_new_car.jpg. On many systems, the
type of a file is indicated by the last part of its name (jpg, in this case). Every
file takes up some space on the hard disk, and, of course, a large file takes up
more space than a small one. As the discussion we’ve just had might suggest,

November 8, 2001 12:08 kam23051_ch01 Sheet number 18 Page number 19 cyan black

1.4 Compilers 19

Animation is represented as a sequence of pictures. Each picture is a sequence of numbers. First
picture: 0, 0, 0, 128, 0, 0, 0; Second picture: 0, 0, 128, 192, 128, 0, 0; Third picture: 0, 128, 192, 224,
192, 128, 0. Place two numbers at beginning, giving height and width of each picture: 7, 8, 0, 0, 0, 128,
0, 0, 0, 0, 0, 128, 192, 128, 0, 0, . . .

FIGURE 1.9 Representations of animations using numbers.

files containing sound and animations tend to be very large, while files containing
text are usually of more modest size.

1.4

Compilers

Let’s talk about the mechanics of programming. After you have designed the
algorithm and written the program on paper, you begin the process of entering it
into a file on the computer’s hard disk. Entering and modifying your program in
a file are done using a text editor, or just editor, a program provided to you that text editor
permits the storage and retrieval of what you have written on the disk. Learning
how to use an editor well can make the job of entering a program much easier.

The program you have entered is written in Java. Java is not the same as the high-level
languagemachine language of your computer. Rather, it is a high-level language designed

November 8, 2001 12:08 kam23051_ch01 Sheet number 19 Page number 20 cyan black

20 CHAPTER 1 WHAT IS PROGRAMMING?

(a)

Current varies
over time.

Input:
signal from
microphone

Output:
digitized
signal

A/D converter

97 92 121 67 69 70 91 78 56 69

 second,

sampled 10 times

1
44,000()

01100001
01011100
01111001
01000011
01000101...

(b)

FIGURE 1.10 (a) Sound is carried through the air. Microphone
turns sound into electrical impulses of varying strength.
(b) Analog-to-digital (A/D) converter samples signal at
regular intervals (1

44,000 second intervals in this illustra-
tion). The sampled values (in binary, of course) are sent
to the device that will process the digitized signal.

to make programming easier than using machine language. Most programming
is done in such high-level languages; other examples of high-level languages
include C, C++, and Visual Basic. However, as we have indicated above, only
machine language programs can be executed by a computer. Somehow, the Java
program needs to be translated to machine language. In the very early history of
computers, programmers might do such a translation by hand, but now it is done
by another program called a compiler (see Figure 1.12). The Java program youcompiler

November 8, 2001 12:08 kam23051_ch01 Sheet number 20 Page number 21 cyan black

1.4 Compilers 21

note_to_me.txt
Text

10010101…
Rover.jpg
JPEG image
00111001…

budget.xls
Spreadsheet
01011011…

FIGURE 1.11 Files occupy space on the hard disk. Files consist of many
binary digits. A file also has a name and a type. In most
systems, the type is given as the latter part of the name;
for example, “xls” indicates a spreadsheet created by
Excel.

enter is called the source code; the compiler translates it into machine language source code
and stores the result in another file; it is called the object code. The object file object code
can be loaded into the computer’s main memory and executed by the CPU.

In summary, to create and run a Java program, you need to enter the program
using a text editor; execute a special program, the compiler, to translate the Java
to machine language; and then load the machine language into main memory and
execute it. The process is illustrated in Figure 1.12.

Actually, this process doesn’t apply to Java in exactly the same way as it
does to most high-level languages. Java is different because one of the goals of
the Java language is to be platform-independent, that is, to be able to execute on a platform-independent
wide variety of different types of machines after it has been compiled. It follows
that we cannot translate it to machine language, because each program in machine
language only runs on one type of machine. Instead, Java is translated into an
intermediate-level language called Java Bytecode. Java Bytecode is subsequently Java Bytecode
interpreted in the exact same way on every computer, so that a Java program does
the same thing whether run on an IBM PC, an Apple Macintosh, or whatever.

So the process of creating and executing a Java program is modified a
bit: Once you have the file containing the Java program, you use a compiler
to translate it to a program in the Java Bytecode language, and then you use
another special program, called an interpreter, to execute the Java Bytecode. interpreter
A particularly attractive feature of Java is that many modern Internet browsers
(such as Netscape Navigator and Microsoft’s Internet Explorer) incorporate Java
interpreters.

The precise steps you will follow—what editor you use, how to save files,
how to invoke the compiler, etc.—depend on the system you are using. The
simplest case occurs when you are writing an application on a command-oriented
system (such as DOS or UNIX). In this case, you place your program in a file
called whatever.java (whatever can be anything you choose, but java

November 8, 2001 12:08 kam23051_ch01 Sheet number 21 Page number 22 cyan black

22 CHAPTER 1 WHAT IS PROGRAMMING?

prog1.java
JAVA

01110100
01101000
01001011

Editor
While (---) and the

.

.

.

Programmer types program using a text editor. File is stored on disk with
type “JAVA.” Text is represented in binary.

Programmer invokes Java compiler. Compiler reads source file and
produces object file.

Programmer invokes Java interpreter to run object file.

Java compiler
runs in CPU

Java compiler
prog1.java

prog1.java
prog1.class

Java interpreter
runs program

prog1.java

prog1.class

…

FIGURE 1.12 Entering, compiling, and executing a Java program.

must be java). Then type the command

javac whatever.java

to compile the program, and then

java whatever

to execute it.

November 8, 2001 12:08 kam23051_ch01 Sheet number 22 Page number 23 cyan black

1.5 Debugging 23

Again, you must always compile your program first. You can then execute
it (as many times as you like).

1.5

Debugging

In reality, the “enter/compile/execute” process rarely runs as smoothly as we’ve
described it. In fact, most of the time the program you enter will fail either to
compile correctly or to execute correctly. In that case, you will have to go back
to the editor and fix the problem, then again compile and execute. The creation
of programs is referred to as the edit/compile/execute cycle, because those three edit/compile/execute

cyclesteps are repeated many times.
Your program will fail to compile if it has syntactic errors, meaning that it syntactic errors

fails to adhere to the grammatical rules of Java. The compiler will be unable to
“understand” your program, and it will tell you so, usually in a terse, unfriendly
way. Something as simple as omitting a semicolon or entering a letter in uppercase
when it should be in lowercase, or vice versa, can easily cause the compiler to
reject your program. You must figure out what needs to be changed, use the editor
to change it, and then try compiling again. After a few iterations of this process,
the program will compile properly into Java Bytecode form.

Just because the program compiles without errors does not guarantee that
it will work correctly! You may have written something that is grammatically
correct but that doesn’t do at all what you expected. Errors that occur during the
execution of the program are called run-time errors or logic errors; they need run-time errors
to be fixed, too, just as the syntax errors do. Run-time errors can result from logic errors
simple typing mistakes or from flaws in the algorithm. In either case, it’s back
to the editor to revise your program and back to the compiler until the algorithm
is correct, your program compiles, and finally it executes to completion. Did it
get the right answers? If so, try enough additional data to be sure it really works;
if not, find the errors, correct them, and recompile and rerun the program. This
whole process of removing bugs (errors) from a program is called debugging. debugging

The edit/compile/execute cycle is illustrated in Figure 1.13. Just below the

Editor is a Java program. The Compiler translates this Java program

into Java Bytecode, shown in the figure as a sequence of numbers, which, of
course, it is. The Java Bytecode produced by the compiler is then loaded and

interpreted by the Java Interpreter , producing the output shown.

If you’re working in an integrated development environment, or IDE, in- integrated
development
environment

stead of a command-oriented system, you’re lucky! An IDE allows you to edit,
compile, and run programs by clicking on command buttons, rather than by typ-
ing commands. The procedures for compiling and executing programs will differ
from those just described for command-oriented systems; consult the manual or
your local guru for details.

November 8, 2001 12:08 kam23051_ch01 Sheet number 23 Page number 24 cyan black

24

Editor

import CSLib.*;

public class Temperature {
// Convert temperature from Fahrenheit to Centigrade
// Author: Samuel N. Kamin, June 1, 2001

public void compute () {
double temperature; // The Fahrenheit temperature.
InputBox in;
OutputBox out;

in = new InputBox();
in.setPrompt ("Please type the temperature (deg F): ");
temperature = in.readDouble();

out = new OutputBox();
out.print(temperature);
out.print(" deg F is ");
out.print((5.0 * (temperature - 32.0)) / 9.0);
out.println(" deg C");

}
}
public class TemperatureClient {
// Exercise the Temperature class.
// Author: Samuel N. Kamin, June 1, 2001

public static void main (String[] args) {
Temperature test;
test = new Temperature();
test.compute();

}
}

Compiler

0000000 177312 137272 001400 026400 030400 000012 000025 003435
0000020 017000 000012 000002 004035 017400 000012 000002 005040
0000040 001000 020400 000007 005042 003400 016400 000012 000007
0000060 004043 022000 000012 000007 003045 012100 000000 000000
0000100 000000 040006 000100 000000 000000 003000 021100 000000
0000120 000000 000000 000010 005046 003400 023400 000007 003450
0000140 024400 000001 036006 067151 072151 000476 001400 024450
0000160 000526 002000 067503 062544 000001 046017 067151 047145
0000200 066565 062542 052162 061141 062554 000001 061407 066557
0000220 072560 062564 000001 051412 072557 061562 043145 066151
0000240 000545 010000 062524 070155 071145 072141 071165 027145
0000260 060552 060566 000014 000026 000427 007000 051503 064514
0000300 027542 067111 072560 041164 074157 000001 050045 062554
0000320 071541 020145 074564 062560 072040 062550 072040 066545
0000340 062560 060562 072564 062562 024040 062544 020147 024506
0000360 020072 000014 000052 006053 026000 026400 000001 041417
0000400 046123 061151 047457 072165 072560 041164 074157 000014
0000420 000056 000457 005000 062040 063545 043040 064440 020163
0000440 000014 000056 000453 003000 062040 063545 041440 000014
0000460 000060 000453 005400 062524 070155 071145 072141 071165
0000500 000545 010000 060552 060566 066057 067141 027547 061117
0000520 062552 072143 000001 071411 072145 071120 066557 072160
0000540 000001 024025 065114 073141 027541 060554 063556 051457
0000560 071164 067151 035547 053051 000001 071012 060545 042144
0000600 072557 066142 000545 001400 024450 000504 002400 071160
0000620 067151 000564 002000 042050 053051 000001 070007 064562
0000640 072156 067154 020400 012000 012400 000000 000000 001000
0000660 000400 013000 013400 000400 014000 000000 016400 000400
0000700 000400 000000 002400 133452 000400 000261 000000 000001
0000720 000031 000000 000006 000001 000000 000003 000001 000032
0000740 000027 000001 000030 000000 000173 000007 000005 000000
0000760 135503 001000 133531 001400 026516 002022 000266 026405
0001000 000266 044006 000273 054407 000267 035010 014404 023404
0001020 000266 014411 011004 133012 005400 002031 000024 023414
0001040 000024 063416 012153 010000 133157 004400 002031 011022
0001060 000266 130423 000000 000400 014400 000000 023000 004400
0001100 000000 006000 004000 006400 007000 007000 011400 010000
0001120 016000 010400 021000 011000 024400 011400 035400 012000
0001140 041000 012400 000400 015400 000000 001000 016000 177312
0001160 137272 001400 026400 012400 000012 000006 003417 010000
0001200 000012 000002 005017 001000 010400 000007 003422 011400
0001220 000001 036006 067151 072151 000476 001400 024450 000526
0001240 002000 067503 062544 000001 046017 067151 047145 066565
0001260 062542 052162 061141 062554 000001 066404 064541 000556
0001300 013000 055450 065114 073141 027541 060554 063556 051457
0001320 071164 067151 035547 053051 000001 051412 072557 061562
0001340 043145 066151 000545 013000 062524 070155 071145 072141
0001360 071165 041545 064554 067145 027164 060552 060566 000014
0001400 000007 000410 005400 062524 070155 071145 072141 071165
0001420 006145 012000 004000 000001 052021 066545 062560 060562
0001440 072564 062562 066103 062551 072156 000001 065020 073141
0001460 027541 060554 063556 047457 065142 061545 000564 003400
0001500 067543 070155 072165 000145 000041 000005 000006 000000
0001520 000000 000002 000001 000007 000010 000001 000011 000000
0001540 000035 000001 000001 000000 025005 000267 130401 000000
0001560 000400 005000 000000 003000 000400 000000 000400 004400
0001600 005400 006000 000400 004400 000000 026400 001000 001000
0001620 000000 006400 000273 054402 000267 046003 133053 002000
0001640 000261 000000 000001 000012 000000 000016 000003 000000
0001660 000007 000010 000010 000014 000011 000001 000015 000000
0001700 000002 000016
0001703

Interpreter

Compiler errors
and warnings

Run-time
errors

Incorrect
output

FIGURE 1.13 The cycle of editing, compiling, and debugging a program. The Java program
shown is the temperature program from Section 3.3 (pages 67 and 68).

November 8, 2001 12:08 kam23051_ch01 Sheet number 24 Page number 25 cyan black

1.6 Applications and Applets 25

1.6

Applications and Applets

In Java, you can write two kinds of programs: applications and applets. Applica- applications
tions are stand-alone programs that run on your own computer. They are no
different from the kinds of programs that you might write in other programming
languages, such as C++. Applications can read and manipulate data stored on your
computer’s disk, as well as data that you enter through the keyboard. Applications
can also write data on your disk, display output on your screen, and print on
your printer. All the programs you normally run, including word processors,
spreadsheet programs, and games, are applications.

Unlike applications, applets are executed from within a browser, such as applets
Netscape Navigator or Internet Explorer. Once you’ve written an applet, not browser
only can you execute it from within your browser, but also you can make it
available for others to execute from within their browsers. Correspondingly, you
can execute applets that other programmers have written. The ability to execute
applets really brings the World Wide Web to life, and it is its ability to write
applets that has made Java the sensation that it is.

The difference between applications and applets is illustrated in Figure 1.14.

(a) Application is a stand-alone program
 that runs in its own window:

Enter data:
Answer:

(b) Applet runs in a window within the
 browser's window:

Enter data:
Answer:

NETSCAPE

FIGURE 1.14 Applications versus applets.

November 8, 2001 12:08 kam23051_ch01 Sheet number 25 Page number 26 cyan black

26 CHAPTER 1 WHAT IS PROGRAMMING?

We will teach you how to write both applications and applets. Applets are
more fun, because you can easily show your work to the entire world. On the
other hand, since creating and running applets require slightly more work than
creating an application (for example, you have to create a web page to run an
applet), we will begin by focusing on applications. Applets are covered in detail
in Chapter 13. In any case, the differences between them are mainly superficial;
an application and an applet, if they do the same computation, will differ only
slightly.

Summary
The computer can do extraordinary things in the hands of a skillful programmer.
By now you should have some idea of the steps involved in programming. The
problem must first be clarified and an appropriate algorithm developed; the al-
gorithm must be stated in a specific computer language, such as Java, to become
a program. Object-oriented programming is a modern paradigm that allows the
programmer to model the problem in a real-world fashion. Objects interact with
one another by sending messages.

The most important internal parts of a computer are the central processing
unit, main memory, and hard disk. In addition, input/output devices allow the
computer to receive input from, and provide results to, the outside world. A
program executes only when it and all the data it needs are in the main memory;
programs and data can be read from the hard disk when needed, and results can
be written out to the hard disk.

Computers use binary numbers. Numbers can be used to represent any con-
ceivable kind of data. Text is represented as a sequence of numbers by choosing
a code for each letter. Pictures are represented by dividing them into numerous
picture elements, or pixels, and representing each pixel by a number. Video im-
ages are represented by placing numerous pictures one after another. Sounds are
represented by sampling the sound wave at regular intervals. All data are stored
in files on the hard disk.

To run a program, enter it into a file using an editor, then compile it to
transform it to machine language. Debugging is the process whereby errors
in a program are detected and fixed. Errors can be syntactic, meaning that
the compiler cannot understand the program; or they can be logical, meaning
that the program compiles to machine language but an error occurs when it
is executed. Errors that occur during execution of a program will sometimes
cause the program to stop prematurely with an (obscure, usually) error message;
other times, they will simply give incorrect results with no warning. Programs
must be thoroughly tested and debugged to ensure that neither of these errors
can occur.

In Java parlance, applications are ordinary programs that are run from a
computer’s desktop, and applets are programs that run within a window inside a
web browser. Java can be used to write either kind of program.

November 8, 2001 12:08 kam23051_ch01 Sheet number 26 Page number 27 cyan black

Summary 27

Exercises
1. To familiarize yourself with the notion of an algorithm, write specific, detailed, pro-

cedures for the following activities. Use the Java “if” and “while” constructs where
appropriate.
(a) Fill your car with gas.
(b) Place the initial set of red and black pieces on a standard 8× 8 checkerboard.
(c) Generalize the algorithm in part (b) so that it works for a checkerboard of any

given size n, so long as n is even.
(d) Add two three-digit decimal numbers.
(e) Generalize the algorithm in part (d) to add two decimal numbers of any length n.

2. The central programming structure in any object-oriented language is the class. How-
ever, some languages use different terminology. Use the Internet to look up each of
the following computer languages. For each, determine whether or not it is an object-
oriented language and, if it is, the term used for what Java calls a class:
(a) Fortran
(b) Cobol
(c) C
(d) C++
(e) JavaScript
(f) Eiffel
(g) Visual Basic

3. Using the Internet, find a computer you can buy for between $900 and $1000. Describe
the computer, giving the type of its CPU, the amount of main memory and the size of
its hard disk.

4. In addition to binary (base 2) and decimal (base 10), computer programmers frequently
use octal (base 8) representation. Numbers in octal use digits 0–7, and the multiplier
for the ith digit is 8i . For example, 3708 = 3× 82 + y × 81 + 0× 80 = 24810.
(a) Convert 3708 to binary.
(b) Convert 1011110002 to octal.
(c) Octal numbers are popular in computing because there is a simple way to convert

them to and from binary. Can you find the algorithm? After doing several more
conversions the hard way (translating to and from decimal), you should be able
to see it.

5. Continuing with the previous exercise, there is another base commonly used in com-
puting: base 16, or hexadecimal. Since this base needs 16 numerals, we use the
orginary numerals 0–9 and the letters A–F for the numbers from 10 to 15. For exam-
ple, 1FF16 = 51110(1× 162+ 15× 161+ 15× 160). As with octal notation, the main
attraction of hexadecimal is that it is easy to convert to and from binary. Redo part
(c) of exercise 4 using hexadecimal in place of octal.

6. AlthoughASCII is a very widely used code for English text, it is quite limited because,
as a one-byte code, it can represent only 256 different characters. Java uses the more
modern Unicode representation, which is a two-byte (16-bit) code, allowing for 65,536
different characters. Find the Unicode code for these characters:

November 8, 2001 12:08 kam23051_ch01 Sheet number 27 Page number 28 cyan black

28 CHAPTER 1 WHAT IS PROGRAMMING?

A: ordinary capital A
ç: c with “cedilla”
π : Lower-case Greek letter “pi”
£: British pounds sterling
¥: Japanese Yen symbol

7. A black-and-white image uses a single bit per pixel. A gray-scale image might permit
16 levels of gray (from pure white to pure black). Many computers allow three options
for representing colors: 256 colors (one byte per pixel), “thousands of colors” (two
bytes per pixel) and “millions of colors” (four bytes—one word—per pixel). If a
1000× 1000-pixel image is stored in a computer, how much memory will it occupy
if it is represented in each of these ways?

