


\lo" element is swapped with itself. Finally, the recursive call in each case takes the

same time.

14.5

On an 850Mhz Pentium III, insertion sort takes 0.010 seconds when the array is sorted

in ascending order, and 0.541 seconds when sorted in reverse order, The reason is that

when the array is in order, inserting the rightmost element into the sorted portion to

the left takes a single step, with no recursive call to insertInOrder. However, when

the array is sorted in reverse, the insertInOrder into a partition of size k requires k

recursive calls.

14.6

On an 850Mhz Pentium III, quicksort takes 0.020 seconds when the array is sorted in

ascending order, and 0.010 seconds when sorted in reverse order. (This computer is

so fast that it would take an array of nearly a million elements to require 5 seconds;

however, stack over
ow occurs with such a large array.) The reason that the two

versions don't take the same amount of time is that the partitioning algorithm happens

to work well on one, but not as well on the other. Detailed analysis of the \best case"

and \worst case" arrangements is diÆcult.

14.7

int sum (IntList list) {

int s = 0;

while (list != null) {

s = s + list.getValue();

list = list.getTail();

}

}

14.8

Here's a direct client version of the previous sum method. This is not an instance

method of the class IntList, but would be present in a separate client.

int sum (IntList list) {

if (list == null)

return list.getValue();

else

return list.getValue() + sum(list.getTail());

}

}

Here's an instance method (of IntList to sum recursively. An important di�erence

is that this method can only be applied to an IntList object that is not null, so the

IntList contains at least one element. The previous versions of sum could be applied

to null IntLists.

73



int sum () {

if (tail == null)

return value;

else

return value + tail.sum();

}

}

14.9

public void addAfterNth_mut (int n, int x) {

if (n==0) {

IntList l = new IntList(x, tail);

tail = l;

} else if (tail != null)

tail.addAfterNth_mul(n-1, x);

}

14.10

public IntList addNth_mut (int n, int x) {

if (n == 0)

return new IntList(x, this);

else if (n == 1) {

IntList l = new IntList(x, tail);

tail = l;

return this;

} else if (tail != null) {

tail.addNth_mut(n-1, x);

return this;

}

}

14.11

1 public class Binom {

2

3 static int cost (int m, int n) {

4 if (n > 0 && m > 0)

5 return 1 + cost(m-1, n) + cost(m-1, n-1);

6 else

7 return 0;

8 }

9

10 public static void main (String[] args) {

11 System.out.println(cost(30, 15));

12 }

13 }

and

74



1 public class BinomCache {

2

3 static int[][] cache;

4

5 private static int costCache (int m, int n) {

6 if (cache[m][n] == -1) {

7 int ans;

8 if (n > 0 && m > 0)

9 ans = 1 + costCache(m-1, n) + costCache(m-1, n-1);

10 else

11 ans = 0;

12 cache[m][n] = ans;

13 }

14 return cache[m][n];

15 }

16

17 public static int cost (int m, int n) {

18 cache = new int[m+1][n+1];

19 for (int i=0; i<m+1; i++)

20 for (int j=0; j<n+1; j++)

21 cache[i][j] = -1;

22 return costCache(m, n);

23 }

24

25 public static void main (String[] args) {

26 System.out.println(cost(30, 15));

27 }

28 }

75


