S.C. Chapra Applied Numerical Methods with MATLAB Errata for First Edition
 (Last updated: 2/6/06)

p. 13; Prob. 1.6 Derivatives in equations should be with respect to time:

$$
\begin{aligned}
& \frac{d(A y)}{d t}=3 Q \sin ^{2}(t) \quad-Q \\
& \frac{d y}{d t}=3 \frac{Q}{A} \sin ^{2}(t)-\frac{Q}{A}
\end{aligned}
$$

p. 45; Third line from the top should be

$$
y=\cos (t) ;
$$

p. 64; Change paragraphs at bottom of page to:

In general, for computer tools that use 32-bit word size, fractional numbers, called floating point numbers in computing jargon, can be expressed to about seven base-10 digits of precision. Thus, π can be expressed as 3.141593 . For tools using 64 -bit words, the precision increases to about fifteen base-10 digits. Thus, π would be expressed as 3.14159265358979 . Note that $\mathbf{6 4}$-bit precision is standard in MATLAB. This is sometimes called double precision.

Range. There are finite ranges of values that the computer can represent. For computer tools that use 16 -bit word size, the range of integers is typically from $-32,768$ to 32,767 . For those using 32-bit word size, these increase to $-2,147,483,647$ to $2,147,483,647$, and for 64 -bit word size to -9.22×10^{18} to 9.22×10^{18}. For floating point numbers, the ranges are 10^{-38} to 10^{38} and 10^{-308} to 10^{308} for 32 -bit and 64 -bit word size, respectively.
p. 69; Eq. (4.13) change $f^{\prime}\left(x_{i}\right) / 2$! to $f^{\prime \prime}\left(x_{i}\right) / 2$!

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2!} h^{2}+\frac{f^{(3)}\left(x_{i}\right)}{3!} h^{3}+\cdots+\frac{f^{(n)}\left(x_{i}\right)}{n!} h^{n}+R_{n}
$$

p. 94; The following changes should be made for some of the formulas on this page

$$
\begin{aligned}
& E_{a}^{0}=\frac{x_{u}^{0}-x_{l}^{0}}{2}=\frac{\Delta x^{0}}{2} \text { change to } \rightarrow E_{a}^{0}=x_{u}^{0}-x_{l}^{0}=\Delta x^{0} \\
& E_{a}^{1}=\frac{\Delta x^{0}}{4} \text { change to } \rightarrow E_{a}^{1}=\frac{\Delta x^{0}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{a}^{n}=\frac{\Delta x^{0}}{2^{n+1}} \text { change to } \rightarrow E_{a}^{n}=\frac{\Delta x^{0}}{2^{n}} \\
& n=1+\frac{\log \left(\Delta x^{0} / E_{a, d}\right)}{\log 2}=1+\log _{2}\left(\frac{\Delta x^{0}}{E_{a, d}}\right) \text { change to } \rightarrow n=\frac{\log \left(\Delta x^{0} / E_{a, d}\right)}{\log 2}=\log _{2}\left(\frac{\Delta x^{0}}{E_{a, d}}\right) \\
& n=1+\log _{2}\left(\frac{150 / 0.5859}{2}\right)=8 \text { change to } \rightarrow n=\log _{2}\left(\frac{150}{0.5859}\right)=8
\end{aligned}
$$

p. 99; Fig. P5.5

p. 122; Prob. 6.19; change units of $k_{2}=40 \mathrm{~g} /\left(\mathrm{s}^{2} \mathrm{~m}^{0.5}\right)$
p. 122; Prob. 6.20; change equation to

$$
y=\left(\tan \theta_{0}\right) x-\frac{g}{2 v_{0}^{2} \cos ^{2} \theta_{0}} x^{2}+y_{0}
$$

where $y_{0}=$ the initial elevation.
p. 137; Prob. 7.7; Next to last equation, Change $F_{2, h}$ to $F_{3, h}$.

$$
\sum F_{H}=0=-F_{2}-F_{3} \cos 60^{\circ}+F_{3, h}
$$

p. 147; Middle of page, equation should be (change a_{21} to a_{22})

$$
\left(a_{22}-\frac{a_{21}}{a_{11}} a_{12}\right) X_{2}+\cdots+\left(a_{2 n}-\frac{a_{21}}{a_{11}} a_{1 n}\right) x_{n}=b_{2}-\frac{a_{21}}{a_{11}} b_{1}
$$

p. 205; Second equation in Sec. 12.3.2

$$
\frac{\partial S_{r}}{\partial a_{1}}=-2 \sum\left[\left(y_{i}-a_{0}-a_{1} x_{i}\right) x_{i}\right]
$$

p. 210; Table 12.5 change heading of third column to $a_{0}+a_{1} x_{i}$
p. 217; Change polynomial representation at bottom of page to

$$
f(x)=p_{1} x^{n}+p_{2} x^{n-1}+\cdots+p_{n} x+p_{n+1}
$$

p. 233; Prob. 13.7, Equation should be (change 0 to o)

$$
o=f_{3}(T)+f_{1}(c)
$$

p. 244; Third equation from the bottom, change 0 in denominator to 1 .
$f\left[x_{2}, x_{1}\right]=\frac{1.386294-0}{4-1}=0.4620981$
p. 263; In $10^{\text {th }}$ line of function, change int to fix

$$
i M=f i x((i L+i U) / 2) ;
$$

p. 264; Eq. (15.7) change f_{i} after equal sign to f_{i+1}

$$
f_{i}+b_{i}\left(x_{i+1}-x_{i}\right)+c_{i}\left(x_{i+1}-x_{i}\right)^{2}=f_{i+1}+b_{i+1}\left(x_{i+1}-x_{i+1}\right)+c_{i+1}\left(x_{i+1}-x_{i+1}\right)^{2}
$$

p. 290; Table 16.1 caption change " $x=0$ to 8 " to " $x=0$ to 0.8 "
p. 302; In equation, change 40 to 72 ,

$$
T(x, y)=2 x y+2 x-x^{2}-2 y^{2}+72
$$

p. 315; change Eqs. (17.18) to (17.20) at bottom of page to

$$
\begin{align*}
& x=a_{1}+a_{2} x_{d} \tag{17.18}\\
& a=a_{1}+a_{2}(-1) \tag{17.19}\\
& b=a_{1}+a_{2}(1) \tag{17.20}
\end{align*}
$$

p. 316; change Eq. (17.21) to

$$
\begin{equation*}
a_{1}=\frac{b+a}{2} \quad \text { and } \quad a_{2}=\frac{b-a}{2} \tag{17.21}
\end{equation*}
$$

p. 343; Prob. 18.2(c) to
(c) Heun's method without iteration.

