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Curve Fitting: 
Fitting a Straight Line

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to how least-squares
regression can be used to fit a straight line to measured data. Specific objectives
and topics covered are

• Understanding the difference between regression and interpolation.
• Familiarizing yourself with some basic descriptive statistics and the normal

distribution.
• Knowing how to compute the slope and intercept of a best-fit straight line with

linear regression.
• Knowing how to compute and understand the meaning of the coefficient of

determination and the standard error of the estimate.
• Understanding how to use transformations to linearize nonlinear equations so

that they can be fit with linear regression.
• Knowing how to implement linear regression with MATLAB.

YOU’VE GOT A PROBLEM

In Chap. 1, we noted that a free-falling object such as a bungee jumper is subject to the
upward force of air resistance. As a first approximation, we assumed that this force was
proportional to the square of velocity as in

FU = cdv
2 (12.1)

where FU = the upward force of air resistance [N = kg m/s2], cd = a drag coefficient
(kg/m), and v = velocity [m/s].

Expressions such as Eq. (12.1) come from the field of fluid mechanics. Although such
relationships derive in part from theory, experiments play a critical role in their formula-
tion. One such experiment is depicted in Fig. 12.1. An individual is suspended in a wind
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FIGURE 4.2
The approximation of f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2 at x = 1 by 
zero-order, first-order, and second-order Taylor series expansions.

A useful way to gain insight into the Taylor series is to build it term by term. A good
problem context for this exercise is to predict a function value at one point in terms of the
function value and its derivatives at another point.

Suppose that you are blindfolded and taken to a location on the side of a hill facing
downslope (Fig. 4.2). We’ll call your horizontal location xi and your vertical distance with
respect to the base of the hill f (xi ). You are given the task of predicting the height at a
position xi+1, which is a distance h away from you.

At first, you are placed on a platform that is completely horizontal so that you have no
idea that the hill is sloping down away from you. At this point, what would be your best
guess at the height at xi+1? If you think about it (remember you have no idea whatsoever
what’s in front of you), the best guess would be the same height as where you’re standing
now! You could express this prediction mathematically as

f (xi+1) ∼= f (xi ) (4.9)

This relationship, which is called the zero-order approximation, indicates that the value of
f at the new point is the same as the value at the old point. This result makes intuitive sense
because if xi and xi+1 are close to each other, it is likely that the new value is probably sim-
ilar to the old value.

Equation (4.9) provides a perfect estimate if the function being approximated is, in
fact, a constant. For our problem, you would be right only if you happened to be standing
on a perfectly flat plateau. However, if the function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a better estimate.

So now you are allowed to get off the platform and stand on the hill surface with one
leg positioned in front of you and the other behind. You immediately sense that the front 

You’ve Got a Problem A section entitled You’ve Got a
Problem can be found on the first page of most chapters.
Here Chapra poses a real-life problem that requires the type
of numerical solution technique that is the subject of the
chapter. The intent is to introduce the student to the topic via
a tangible example rather than through abstract mathematics.
After an exposition of the numerical methods, the problem is
then revisited in order to demonstrate how the learned mate-
rial provides the means to solve the problem.

Chapter Objectives Chapter Objectives begin each chapter. The objectives provide stu-
dents with the function of each chapter as well as the specific topics covered in each chap-
ter. The objectives enable students to set tangible goals before they begin each chapter.

Theory Presented as it Informs Key Concepts
The text is intended for Numerical Methods
users, not developers. Therefore, theory is not
included for “theory’s sake,” for example no
proofs. Theory is included as it informs key
concepts such as the Taylor Series, conver-
gence, condition, etc. Hence, the student is
shown how the theory connects with practical
issues in problem solving.
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7.1WHAT ARE LINEAR ALGEBRAIC EQUATIONS?

Linear algebraic equations are of the general form,

a11x1 + a12x2 + · · · + a1n xn = b1

a21x1 + a22x2 + · · · + a2n xn = b2

...
...

an1x1 + an2x2 + · · · + ann xn = bn

(7.2)

where the a’s are constant coefficients, the b’s are constants, the x’s are unknowns, and n is
the number of equations. All other algebraic equations are nonlinear.

7.1.1 Linear Algebraic Equations and Engineering Practice

Many of the fundamental equations of engineering and science are based on conservation
laws. Some familiar quantities that conform to such laws are mass, energy, and momentum.
In mathematical terms, these principles lead to balance or continuity equations that relate
system behavior as represented by the levels or response of the quantity being modeled to
the properties or characteristics of the system and the external stimuli or forcing functions
acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. 7.3a). For this case, the quantity being modeled is the
mass of the chemical in each reactor. The system properties are the reaction characteristics

Feed x1 ... ...xi�1 x1 xi�1 xn

(a)

(b)

x2 x4

Feed

x3

x1 x5

FIGURE 7.3
Two types of systems that can be modeled using linear algebraic equations: (a) lumped variable
system that involves coupled finite components and (b) distributed variable system that involves a
continuum.
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Table 2.1 lists the available specifiers. For example, if you want to use open circles enter

>> plot (t, v, 'o')

MATLAB allows you to display more than one data set on the same plot. For example,
if you want to connect each data marker with a straight line you could type

>> plot (t, v, t, v, 'o')

There are other features of graphics that are useful—for example, plotting objects
instead of lines, families of curves plots, plotting on the complex plane, multiple graphs
windows, log-log or semilog plots, three-dimensional mesh plots, and contour plots. As
described next, a variety of resources are available to learn about these as well as other
MATLAB capabilities.

2.6 OTHER RESOURCES

The foregoing was designed to focus on those features of MATLAB that we will be using
in the remainder of this book. As such, it is obviously not a comprehensive overview of all
of MATLAB’s capabilities. If you are interested in learning more, you should consult one
of the excellent books devoted to MATLAB (e.g., Palm, 2004).

Further, the package itself includes an extensive Help facility that can be accessed by
clicking on the Help menu in the command window. This will provide you with a number
of different options for exploring and searching through MATLAB’s Help material. In ad-
dition, it provides access to a number of instructive demos.

As described in this chapter, help is also available in interactive mode by typing the
help command followed by the name of a command or function.

If you do not know the name, you can use the lookfor command to search the
MATLAB Help files for occurrences of text. For example, suppose that you want to find all
the commands and functions that relate to logarithms, you could enter

>> lookfor logarithm

and MATLAB will display all references that include the word logarithm.

TABLE 2.1 Specifiers for colors, symbols, and line types.

Colors Symbols Line Types

Blue b Point . Solid –
Green g Circle o Dotted :
Red r X-mark x Dashdot -.
Cyan c Plus + Dashed --
Magenta m Star *
Yellow y Square s
Black k Diamond d

Triangle(down) v
Triangle(up) ^
Triangle(left) <
Triangle(right) >
Pentagram p
Hexagram h

Illustrations and Tables
Illustrations and tables are
clear and accurate in order to
help students better visualize
the important concepts pre-
sented in the text.

Introductory MATLAB Material The text in-
cludes two introductory chapters on how to use
MATLAB. Chapter 2 shows students how to per-
form computations and create graphs in MATLAB’s
standard command mode. Chapter 3 provides a
primer on developing numerical programs via
MATLAB M-file functions. Thus, the text provides
students with the means to develop their own nu-
merical algorithms as well as to tap into MATLAB’s
powerful built-in routines.
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specify an absolute error. For these cases, bisection along with Eq. (5.6) can provide a use-
ful root location algorithm.

5.4.1 MATLAB M-file: bisection

An M-file to implement bisection is displayed in Fig. 5.7. It is passed the function (func)
along with lower (xl) and upper (xu) guesses. In addition an optional stopping criterion

function root = bisection(func,xl,xu,es,maxit)
% bisection(func,xl,xu,es,maxit):
%   uses bisection method to find the root of a function
% input:
%   func = name of function
%   xl, xu = lower and upper guesses
%   es = (optional) stopping criterion (%)
%   maxit = (optional) maximum allowable iterations
% output:
%   root = real root

if func(xl)*func(xu)>0  %if guesses do not bracket a sign
  error('no bracket')   %change, display an error message
  return                %and terminate
end
% if necessary, assign default values
if nargin<5, maxit = 50; end     %if maxit blank set to 50
if nargin<4, es = 0.001; end     %if es blank set to 0.001

% bisection
iter = 0;
xr = xl;
while (1)
  xrold = xr;
  xr = (xl + xu)/2;
  iter = iter + 1;
  if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
  test = func(xl)*func(xr);
  if test < 0
    xu = xr;
  elseif test > 0
    xl = xr;
  else
    ea = 0;
  end
  if ea <= es | iter >= maxit, break, end
end
root = xr;

FIGURE 5.7
An M-file to implement the bisection method.
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EXAMPLE 5.5 The False-Position Method

Problem Statement. Use false position to solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3.

Solution. As in Example 5.3, initiate the computation with guesses of xl = 50 and
xu = 200.

First iteration:

xl = 50 f (xl) = −4.579387

xu = 200 f (xu) = 0.860291

xr = 200 − 0.860291(50 − 200)

−4.579387 − 0.860291
= 176.2773

which has a true relative error of 23.5%.

Second iteration:

f (xl) f (xr ) = −2.592732

Therefore, the root lies in the first subinterval, and xr becomes the upper limit for the next
iteration, xu = 176.2773.

xl = 50 f (xl) = −4.579387

xu = 176.2773 f (xu) = 0.566174

xr = 176.2773 − 0.566174(50 − 176.2773)

−4.579387 − 0.566174
= 162.3828

which has true and approximate relative errors of 13.76% and 8.56%, respectively. Addi-
tional iterations can be performed to refine the estimates of the root.

Although false position often performs better than bisection, there are other cases
where it does not. As in the following example, there are certain cases where bisection
yields superior results.

EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position

Problem Statement. Use bisection and false position to locate the root of

f (x) = x10 − 1

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Algorithms Presented Using
MATLAB M-files Instead of
using pseudocode, this book
presents algorithms as well-
structured MATLAB M-files.
Aside from being useful com-
puter programs, these provide
students with models for their
own M-files that they will de-
velop as homework exercises.

Worked Examples Each example begins with a
problem statement and ends with a solution. The so-
lution is laid out in detail so that students can clearly
follow the steps in the numerical computation.
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122 ROOTS OF EQUATIONS: OPEN METHODS
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Conservation of energy can be used to show that

0 = 2k2d5/2

5
+ 1

2
k1d2 − mgd − mgh

Solve for d, given the following parameter values: k1 =
40,000 g/s2, k2 = 40 g/(s2 m5), m = 95 g, g = 9.81 m/s2,

and h = 0.43 m.
6.20 Aerospace engineers sometimes compute the trajec-
tories of projectiles such as rockets. A related problem deals
with the trajectory of a thrown ball. The trajectory of a ball
thrown by a right fielder is defined by the (x, y) coordinates
as displayed in Fig. P6.20. The trajectory can be modeled as

y = (tan θ0)x − g

2v2
0 cos2 θ0

x2

Find the appropriate initial angle θ0, if v0 = 30 m/s, and the
distance to home plate is 90 m. Note that the throw leaves
the right fielder’s hand at an elevation of 1.8 m and the
catcher receives it at 1 m.
6.21 You are designing a spherical tank (Fig. P6.21) to hold
water for a small village in a developing country. The vol-
ume of liquid it can hold can be computed as

V = πh2 [3R − h]

3
where V = volume [ft3], h = depth of water in tank [ft], and
R = the tank radius [ft].

If R = 10 ft, what depth must the tank be filled to so that it
holds 1000 ft3? Use three iterations of the most efficient nu-
merical method possible to determine your answer. Determine

the approximate relative error after each iteration. Also, pro-
vide justification for your choice of method. Extra informa-
tion: (a) For bracketing methods, initial guesses of 0 and R will
bracket a single root for this example. (b) For open methods,
an initial guess of R will always converge.
6.22 Perform the identical MATLAB operations as those
in Example 6.7 to manipulate and find all the roots of the
polynomial

f5(x) = (x + 2)(x − 6)(x − 1)(x + 4)(x − 8)

6.23 In control systems analysis, transfer functions are de-
veloped that mathematically relate the dynamics of a sys-
tem’s input to its output. A transfer function for a robotic
positioning system is given by

G(s) = C(s)

N (s)
= s3 + 9s2 + 26s + 24

s4 + 15s3 + 77s2 + 153s + 90

where G(s) = system gain, C(s) = system output, N(s) =
system input, and s = Laplace transform complex frequency.
Use MATLAB to find the roots of the numerator and de-
nominator and factor these into the form

G(s) = (s + a1)(s + a2)(s + a3)

(s + b1)(s + b2)(s + b3)(s + b4)

where ai and bi = the roots of the numerator and denomina-
tor, respectively.

APPENDIX A
MATLAB BUILT-IN FUNCTIONS
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abs, 25
acos, 25
besselj, 256
chol, 169–170
cond, 180–181, 238
conv, 119
dblquad, 320
deconv, 118
disp, 35
eig, 372–373
elfun, 25
eps, 65
erf, 320
error, 38
exp, 25
eye, 133
factorial, 30, 44
feval, 49–50, 327
fminsearch, 231
format long, 17
format short, 18
fprintf, 36–37
fzero, 113–116
grid, 27
help, 33
help elfun, 25
humps, 277, 319, 364

inline, 50, 327
input, 34
interp1, 274–277
inv, 133, 135–136, 176
length, 26
linspace, 21
log, 25
log10, 25
log2, 25, 94
loglog, 30
logm, 25
logspace, 21
lookfor, 28
lu, 166–167
max, 29, 155
mean, 51
norm, 180–181
ode113, 348, 356
ode15s, 360
ode23, 347–348, 350–351
ode23s, 360–361
ode23t, 360
ode23tb, 360
ode45, 348–350, 361, 363
odeset, 350–351
ones, 20
optimset, 115–116, 231

pchip, 275
pi, 18
plot, 26–28
poly, 118, 369
polyfit, 217, 230, 239, 252–255
polyval, 118, 218, 239, 252–255
quad, 318–319
quadl, 318
realmax, 64
realmin, 65
roots, 117–119, 369
semilogy, 30
sign, 41, 322
sin, 25
size, 134
spline, 272–274
sqrt, 25–26
sqrtm, 25
sum, 169
tanh, 5, 25–26
title, 27
trapz, 300
who, 19
whos, 19
xlabel, 27
ylabel, 27
zeros, 20

Problem Sets The text includes a wide-variety of
problems. Many are drawn from engineering and sci-
entific disciplines. Others are used to illustrate numer-
ical techniques and theoretical concepts. Problems
include those that can be solved with a pocket calcula-
tor as well as others that require computer solution
with MATLAB.

Useful Indexes Appendix A
contains MATLAB commands
and Appendix B contains M-file
functions.

Supplements A text Web site is available at
http://www.mhhe.com/chapra. Resources include
PowerPoint slides of text figures and chapter objectives,
M-files and additional MATLAB resources. Available
to instructors only, the detailed solutions for all text
problems will be delivered via CD-Rom, in our new,
electronic, Complete Online Solution Manual Organi-
zation System. COSMOS is a database management
tool geared toward assembling homework assignments,
tests and quizzes. 


