\qquad Please provide a handwritten response.

1a. One way to solve algebraic equations in Derive is to use the solve icon $\Theta_{\text {from the }}$ shortcut menu. To find the zeroes of $f(x)=x^{2}-3 x+2$, Author and highlight $\mathrm{x}^{\wedge} 2-3 \mathrm{x}+2$. Then click Q and select x as the solution variable, algebraically as the solution method, and click OK. Derive will show " $\operatorname{SOLVE}\left(\mathrm{x}^{2}-3 \cdot \mathrm{x}+2\right.$, x)." Derive assumes an equation is equal to zero if we do not specify otherwise. Highlight this and simplify by clicking $=$. Record the result below.

1b. The Solve command, $\Theta_{\text {, }}$, can be used to solve more complicated equations. Author and solve for the zeroes of $f(x)=x^{3}-x^{2}-2 x+2$. Record the result below.

1c. Did Derive give a decimal answer in $\mathbf{1 b}$? We can obtain a decimal answer by highlighting either the "SOLVE" expression OR the solution from 1b, then clicking \approx to approximate the solution. Do this and record the result below.

1d. An alternate way of solving expressions is to highlight the equation we want to solve, click Q, and specify the variable we want. Instead of clicking $\mathbf{O K}$, click Simplify. Derive will not show the "SOLVE" command on the screen; Derive simply gives the final simplified result. Occasionally, however, we want to see what we are solving, instead of simply the answer. Find the solutions of $x^{3}-x^{2}=3 x-2$ using the alternate method and record the results below.

2a. Sometimes $\mathrm{Q}_{\text {, }}$ is unable to solve an equation algebraically. Author and solve $\cos (x)=x^{2}-1$ as above. Record the output from Derive below; did we get an answer?

2b. Try to approximate the solution graphically by plotting $f(x)=\cos (x)$ and $g(x)=x^{2}-1$. Sketch the result on the axes at right. Where, approximately, do these functions intersect?

2c. We can use Derive to solve an equation numerically only if we are able to obtain intervals that contain the solutions. From our graph in 2b, it seems that there is an intersection in the interval $(-2,-1)$ and another one in the interval $(1,2)$. Highlight $\cos (x)=x^{2}-1$ and select Q . Pick x as the variable and numerically as the solution method. Click bounds and specify -2 as the lower and -1 as the upper solution bound. To see the results, click $\mathbf{O K}$ and \approx; Record the result below. Similarly, solve for the solution in the interval $(1,2)$ and record the result below.

2d. Now change parts \mathbf{b} and \mathbf{c} above to solve the equation $\cos (x)=x^{2}-5$. Remember to change the intervals to reflect where solutions are known to exist. Record the results below.

3a. Derive can perform many other algebraic operations. For example, Derive can expand expressions. To expand $(x+y)^{7}$, Author $(x+y)^{\wedge} 7$ and select Simplify \rightarrow Expand from the menu at top. Leave the default selections as they appear and click Expand from the bottom of the open window. Record the result below.

3b. Likewise, Derive can factor expressions. To factor $x^{4}-3 x^{2}+2$, Author the expression and select Simplify \rightarrow Factor. Leave the default selections as they appear and click Factor at the bottom. Record the result below.

