## Assignment 4: Trigonometry and Exponentials (0.5\&6) Name Please provide a handwritten response.

$\qquad$

1a. In Derive, $\sin (x)$ is expressed simply as " $\sin (x)$ " and the constant $\pi$ is denoted by "pi". We can plot the sine function over the domain $-2 \pi \leq x \leq 2 \pi$ by Authoring $\sin (\mathrm{x})$, highlighting the expression, selecting $\approx$ to open a 2DPlot window, clicking Set $\rightarrow$ Plot Range to specify -2pi as the min and 2pi as the max, and then clicking $\approx$. Execute these commands and sketch the result on the axes at right. (Derive
 assumes we mean $y=\sin (x)$ when we plot the above expression.) Derive may show 2832 on the $x$-axis. What value should this be? Why did Derive denote the value as 2832?

1b. More complicated trigonometric functions can also be used, but we must be very careful when writing expressions. For example, the function $y=\sin ^{2}(x)$ would be entered by Authoring $(\sin (\mathrm{x}))^{\wedge} 2$. Do this and record Derive's output below. Is this good notation? Plot the function and sketch the result on the axes at right.


1c. The cosine function $\cos (x)$ is represented in Derive by " $\cos (x)$ " and the tangent function $\tan (x)$ as simply " $\tan (x)$ ". For example, the function $f(x)=\cos 5 x+3 \sin 5 x$ would be used in Derive by Authoring $\mathrm{f}(\mathrm{x}):=\cos (5 \mathrm{x})$ $+3 \sin (5 x)$. (Note the use of parenthesis!) Execute this command, then plot the function. Sketch the result on the axes at right.


1d. All six trigonometric functions in Derive assume that the variable is measured in radians, not degrees. Author then click $=$ to simplify the following: $\sin (\pi / 2)$, $\cos (\pi / 4)$, and $\tan (-\pi / 3)$. Using good notation, neatly record the results below; were the answers what you would expect?
2. The deg constant can be used to express degree measure. For example, Author then click $=$ to $\operatorname{simplify} \sin (60 \mathrm{deg})$ to find $\sin \left(60^{\circ}\right)$. Record the result; is it correct?

3a. Exponential functions in
Derive are expressed using the ${ }^{\wedge}$ symbol just like any other exponent. For example, to plot the function $y=2^{x}$ we would Author $y=2^{\wedge} x$, use $\approx$ to switch to a 2 D Plot window, then $\approx$ to plot the expression. Do this and sketch the result on the axes at right. Adjust the view by clicking the zooming icons, $\xlongequal[\downarrow]{\ddagger}| \pm|\leftrightarrow| * *| \downarrow \mid \rightarrow+$, to get a "good" view of the graph. Experiment!

3b. The special constant $e \approx 2.71828$ is represented in Derive as \#e and the function $e^{x}$ is represented either by $\# \mathrm{e}^{\wedge} \mathrm{x}$ or $\exp (\mathrm{x})$. Author $f(x)=10 e^{-x / 3}$ by entering $\mathrm{f}(\mathrm{x}):=10$ \#e ${ }^{\wedge}(-\mathrm{x} / 3)$. Plot the function and sketch the result on the axes at right.
4. In Derive the natural logarithm function $\ln (x)$ is represented by " $\ln (x)$ ", whereas the logarithm, $\log _{b} x$, of $x$ with base $b$ is denoted " $\log (\mathrm{x}, \mathrm{b})$ ". To enter $\ln (x)$ and $\log _{0.5} x$, we would Author $\ln (\mathrm{x})$ and $\log (\mathrm{x}, 0.5)$. Do this and plot both graphs on the same axes. Sketch the result on the axes at right.




