Assignment 4: Trigonometry and Exponentials (0.5\&6) Please provide a handwritten response.

1a. In Maple, $\sin x$ is expressed as $\boldsymbol{\operatorname { s i n }}(\mathbf{x})$, and the constant $\pi \approx 3.14$ is denoted by $\mathbf{P i}$. We can plot the sine function over the domain $-2 \pi \leq x \leq 2 \pi$ using the command

```
plot(sin(x),x=-2*Pi..2*Pi);
```

Execute this command and sketch the result on the axes at right.
1b. More complicated trigonometric functions can also be used, but they are not always written in Maple as they would be in traditional mathematical notation. For example, the function $y=\sin ^{2} x$ would be plotted over the domain $-2 \pi \leq x \leq 2 \pi$ using the command

```
plot(sin(x)^2,x=-2*Pi.. 2*Pi);
```

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in Maple by $\cos (\mathbf{x})$, and the tangent function $\tan x$ by $\tan (\mathbf{x})$. So, the function $f(x)=\cos 5 x+3 \sin 5 x$ would be represented by

$$
f:=x->\cos (5 * x)+3 * \sin (5 * x) ;
$$

execute this command followed by
plot (f(x), x=-Pi..Pi);
and sketch the result on the axes at right.
1d. All six trigonometric functions in Maple
 assume that the variable is measured in radians, not degrees. Execute the commands $\sin (\mathrm{Pi} / 2) ;, \cos (\mathrm{Pi} / 4) ;$, and $\tan (-\mathrm{Pi} / 3) ;$ and record the results below; were the answers what you would expect?
2. The convert command can be used to express degree measure. For example, execute the command sin (convert ($60 *$ degrees, radians)) ; to find $\sin 60^{\circ}$; is the result correct?

3a. Exponential functions in Maple are expressed using the ${ }^{\wedge}$ symbol just like any other exponent. For example, the function $y=2^{x}$ would be plotted over the domain $-5 \leq x \leq 5$ using the command

$$
\operatorname{plot}\left(2^{\wedge} x, x=-5 \ldots 5\right) ;
$$

Execute this command and sketch the result on the axes at right.
$\mathbf{3 b}$. The special constant $e \approx 2.7$ is represented in Maple by \exp (1), and the function e^{x} is represented by $\exp (\mathbf{x})$; for example, to graph $f(x)=10 e^{-x / 3}$ execute the command

```
plot(10*exp (-x/3),x=-2..2);
``` and sketch the result on the axes at right.
4. In Maple the natural logarithm function \(\ln (x)\) is represented by \(\ln (\mathbf{x})\) whereas the \(\operatorname{logarithm}\) of x with base \(b, \log _{b}(x)\), is denoted by \(\log [b](x)\) (the \(b\) comes first!) Execute the command
\[
\begin{gathered}
\operatorname{plot}([\ln (x), \log [.5](x)], \\
x=0 . .4) ;
\end{gathered}
\]
to plot the functions \(\ln (x)\) and \(\log _{1 / 2}(x)\) together on the same axes, and sketch the result on the axes at right. Label which graph is which!
```

