Name_

Assignment 4: Trigonometry and Exponentials (0.5&6) Please provide a handwritten response.

1a. In *Maple*, $\sin x$ is expressed as $\sin(\mathbf{x})$, and the constant $\pi \approx 3.14$ is denoted by **Pi**. We can plot the sine function over the domain $-2\pi \le x \le 2\pi$ using the command

plot(sin(x),x=-2*Pi..2*Pi);

Execute this command and sketch the result on the axes at right.

1b. More complicated trigonometric functions can also be used, but they are not always written in *Maple* as they would be in traditional mathematical notation. For example, the function $y = \sin^2 x$ would be plotted over the domain $-2\pi \le x \le 2\pi$ using the command

plot(sin(x)^2,x=-2*Pi..2*Pi);

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in *Maple* by $\cos(\mathbf{x})$, and the tangent function $\tan x$ by $\tan(\mathbf{x})$. So, the function $f(x) = \cos 5x + 3\sin 5x$ would be represented by

f:=x->cos(5*x)+3*sin(5*x);

execute this command followed by


plot(f(x),x=-Pi..Pi);

and sketch the result on the axes at right.

1d. All six trigonometric functions in Maple

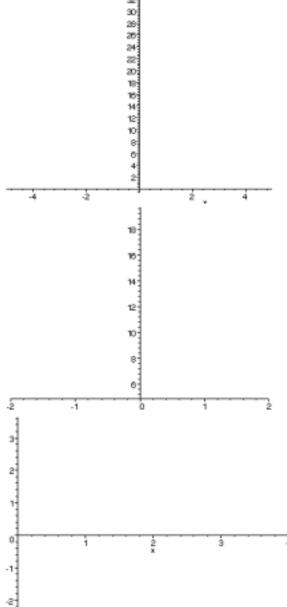
assume that the variable is measured in radians, not degrees. Execute the commands **sin(Pi/2);**, **cos(Pi/4);**, and **tan(-Pi/3);**, and record the results below; were the answers what you would expect?

2. The **convert** command can be used to express degree measure. For example, execute the command **sin(convert(60*degrees,radians))**; to find sin 60°; is the result correct?

3a. Exponential functions in *Maple* are expressed using the ^ symbol just like any other exponent. For example, the function $y = 2^x$ would be plotted over the domain $-5 \le x \le 5$ using the command

Execute this command and sketch the result on the axes at right.

3b. The special constant $e \approx 2.7$ is represented in *Maple* by **exp(1)**, and the function e^x is represented by **exp(x)**; for example, to graph $f(x)=10e^{-x/3}$ execute the command


plot(10*exp(-x/3),x=-2..2);

and sketch the result on the axes at right.

4. In *Maple* the natural logarithm function ln(x) is represented by ln(x) whereas the logarithm of x with base b, $log_b(x)$, is denoted by log[b](x) (the b comes first!) Execute the command

to plot the functions ln(x) and $log_{1/2}(x)$ together on the same axes, and sketch the result on the axes at right. Label which graph is which!

