\qquad Please provide a handwritten response.

1a. One way to solve algebraic equations in Mathematica is to use the Solve command. For example, we can find the zeros of $f(x)=x^{2}-3 x+2$ as in Example 4.1 by executing the command $\mathbf{f}\left[\mathbf{x}_{\mathbf{\prime}}\right]=\mathbf{x}^{\wedge} \mathbf{2}-3 \mathbf{x}+\mathbf{2}$ followed by

$$
\text { Solve }[f[x]==0, x]
$$

Record the result below. (The double equal sign $==$ indicates an equation in Mathematica. You can write "replacement rules" such as $\{\{x->1\},\{x->2\}\}$ in Mathematica's output as simply " $x=1$ or $x=2$ ".)

1b. The Solve command can be used on more complicated equations, such as the one studied in Example 4.3; execute the commands Clear [f] and

$$
f\left[x_{-}\right]=x^{\wedge} 3-x^{\wedge} 2-2 x+2
$$

followed by Solve $[\mathbf{f}[\mathbf{x}]==0, \mathbf{x}]$ to find the zeros of $f(x)=x^{3}-x^{2}-2 x+2$, and record the result below.

1c. Once again, Mathematica did not give a completely decimal answer. We can achieve a decimal answer by giving a name, say solns, to the solutions Mathematica finds, and then applying the \mathbf{N} command to those solutions. Execute the command

```
solns = Solve[f[x] == 0, x]
```

followed by $\mathbf{N}[$ solns] , and record the result below.

2a. Sometimes the Solve command is unable to solve an equation algebraically; in this case we can try to solve it numerically, as mentioned in Example 4.5, using the FindRoot command. FindRoot requires, however, that an approximate value of the solution be known in advance, and this can usually be found by graphing. As an example, execute the command

```
Solve[Cos[x] == x^2 - 1, x]
```

to try to solve the equation $\cos x=x^{2}-1$ in Exercise 39 of the text. (We will learn how to use Mathematica with trigonometric functions in general later.) Record the output below; did we get our answer?

2b. To use FindRoot instead, we will begin with a graph to show approximately where the solution(s), if any, might be found. Execute the command

$$
\operatorname{Plot}\left[\left\{\operatorname{Cos}[x], x^{\wedge} 2-1\right\},\{x,-5,5\}\right]
$$

to plot each side of our equation as a function of x over the domain $-5 \leq x \leq 5$, and sketch the result on the axes at right. It seems from this graph that there are solutions at roughly $x= \pm 1$, and we can now use this information in the FindRoot command.

2c. Because FindRoot strictly speaking only finds zeros of functions, we will consider ourselves to be finding zeros of the function $\cos x-\left(x^{2}-1\right)$ rather than solving the equa-
 tion $\cos x=x^{2}-1$, although these of course amount to the same thing. Execute the command

```
FindRoot[Cos[x] - (x^2 - 1), {x, 1}]
```

to find an accurate value of the solution of the equation near $x=1$, and likewise execute
FindRoot [Cos[x] - (x^2 - 1), $\{x,-1\}$]
to do the same near $x=-1$; record the results below.

2d. Now change parts \mathbf{b} and \mathbf{c} so as to solve the equation $\cos x=x^{2}-5$ instead; remember to replace the $\mathbf{1}$ in $\{\mathbf{x}, \mathbf{1}\}$ to an appropriate starting value suggested by your graph, and similarly for $\{\mathbf{x}, \mathbf{- 1}\}$. Record the solutions below.

3a. Mathematica can perform many other algebraic operations. For example, the Expand command expands algebraic expressions; execute the command Expand [(x $\left.+\mathbf{y})^{\wedge} 7\right]$ to expand the binomial expression $(x+y)^{\top}$, and record the result below.

3b. Likewise the Factor command factors expressions; execute the command

```
Factor[x^4 - 3x^2 + 2]
```

to find the factors of $x^{4}-3 x^{2}+2$, and record the result below. (See Exercise 18.)

