2

4

6

0.75

0.5

0.25

-2 -0.25

-0.5

- 0.75

-6

-4

1a. In *Mathematica*, $\sin x$ is expressed as $\mathbf{Sin[x]}$, and the constant $\pi \approx 3.14$ is denoted by \mathbf{Pi} . We can plot the sine function over the domain $-2\pi \le x \le 2\pi$ using the command

Execute this command and sketch the result on the axes at right.

1b. More complicated trigonometric functions can also be used, but they are not always written in *Mathematica* as they would be in traditional mathematical notation. For example, the function $y = \sin^2 x$ would be plotted over the domain $-2\pi \le x \le 2\pi$ using the command

(Note where the exponent goes!) Execute this command and sketch the result on the axes at right.

1c. The cosine function $\cos x$ is represented in *Mathematica* by $\mathbf{Cos[x]}$, and the tangent function $\tan x$ by $\mathbf{Tan[x]}$. So, the function $f(x) = \cos 5x + 3\sin 5x$ in Exercise 19, Section 0.5 of the text, for example, would be represented by

$$f[x_{-}] = Cos[5x] + 3Sin[5x]$$

Execute this command followed by

and sketch the result on the axes at right.

1d. All six trigonometric functions in *Mathematica* assume that the variable is measured in radians, not degrees. Execute the commands Sin[Pi/2], Cos[Pi/4], and Tan[-Pi/3], and record the results below; were the answers what you would expect?

2. The **Degree** constant can be used to express degree measure. For example, execute the command Sin[60 Degree] to find $sin 60^{\circ}$; is the result correct?

3a. Exponential functions in *Mathematica* are expressed using the ^ symbol just like any other exponent. For example, the function $y = 2^x$ appearing in Example 6.3 would be plotted over the domain $-5 \le x \le 5$ using the command

$$Plot[2^x, \{x, -5, 5\}]$$

Execute this command, sketch the result on the axes at right and tell how it compares with Figure 0.55a.

Plot[
$$10Exp[-x/3]$$
, $\{x, -2, 2\}$] and sketch the result on the axes at right.

4. In *Mathematica* the natural logarithm function $\ln x$ is represented by $\operatorname{Log}[x]$, whereas the logarithm $\log_b x$ of x with base b is denoted by $\operatorname{Log}[b, x]$. (The **b** comes first!) Execute the command

to plot the functions $\ln x$ and $\log_{1/2} x$ together on the same axes, and sketch the result on the axes at right. Label which graph is which.

