Basic Maple Commands and Menus

This sheet is provided as a quick reference for some of the Maple commands and menus. For more detailed instructions, see the appropriate section in this workbook or "Using Help" under Help on the Maple menu bar.

These commands can also be accessed under the menu headings File, Edit, View, and Insert. There are additional style commands under Format including justification for the worksheet.

Plot Menus

2D plots

These commands can also be accessed under the menu headings Axes, Color, Style, and Projection. There are additional style commands under these menu headings for various views and coloring schemes.

Commands for 2D Plots

Common Name	Maple Command and Options
Cartesian Plot (See pages 3, 15, 21, 22 , and 43.)	plot ([f,g],x=a..b,c..d,discont=true); [$f, g]$ - function(s) to be plotted (omit [] to plot one function) $\mathbf{x}=\mathbf{a} . \mathbf{b}$ - horizontal domain c. .d- (optional) vertical range discont=true - (optional) remove lines connecting plus and minus infinity
Contour Plot (See page 53.)	```execute with(plots); contourplot(f,x=a..b,y=c..d); f x=a..b - horizontal domain y=c..d - vertical range```
Density Plot (See page 53.)	```execute with(plots); densityplot({f},x=a..b,y=c..d); f}\mathrm{ - function to be plotted x=a . .b - horizontal domain y=c..d - vertical range```
Direction Field (See page 33.)	```execute with (plots) ; fieldplot ([dx, dy], x=a. .b, y=c. .d); \(d x\) - change in the \(x\) value \(d y\) - change in the \(y\) value \(\mathbf{x}=\mathbf{a} . \mathbf{b}\) - horizontal domain \(\mathbf{y}=\mathbf{c} . \mathrm{d}\) - vertical range```
Histogram (See page 30.)	execute with(stats); and with(statplots); histogram (L, area=a, numbars=b) ; L - list of data to be plotted area=a - total area of all bars numbars $=\mathrm{b}$ - number of bars to be plotted
Implicit Plot (See pages 17 and 32.)	```execute with(plots); implicitplot({f,g},x=a..b,y=c..d); {f,g} - equation(s) to be plotted (omit {} to plot one function) x=a..b - horizontal domain y=c..d - vertical range```
Parametric Plot (See pages 42 and 49.)	plot([x,y,t=a..b]); \mathbf{x} - x -coordinate as a function of t \mathbf{y} - y-coordinate as a function of t $t=a . \operatorname{b}$ - domain for t
Polar Plot (See page 45.)	```execute with(plots); polarplot({f,g},q=a..b); {f,g} - function(s) to be plotted (omit {} to plot one function) q=a..b - angle domain to be plotted```

Common Name	Maple Command and Options
Cartesian Plot (See pages 53 and 57.)	plot3d(\{f\},x=a..b,y=c..d, orientation=[p,t]); $\{\mathrm{f}\}$ - function of (x, y) to be plotted $\mathbf{x}=\mathbf{a} . \mathrm{b}$ - horizontal domain $\mathbf{y}=\mathbf{c} . \mathrm{d}$ - vertical domain orientation=[p,t]-(optional) angles of view for graph
Cylindrical Plot (See page 59.)	```execute with(plots); cylinderplot([r,t,f,g],t=a..b,r=c..d); r,t - letters used for radius and angle f,g - functions used for radius, r, and angle, t t=a. .b - domain for angle r=c..d - domain for radius```
Direction Field (See page 63.)	```execute with(plots); fieldplot3d(F,x=a..b,y=c..d,z=e..f); F - function of (x,y,z) to be plotted x=a..b y=c..d - domain to plot in y direction z=e..f - range to plot in z direction```
Solid of Revolution (See page 27.)	```execute with(plots); tubeplot([x,0,0],x=a..b,radius=f); [x,0,0] - axis to revolve about x=a..b - domain for t radius=f - function to be revolved```
Spherical Plot (See page 60.)	```execute with(plots); sphereplot (f,t=a..b,p=c..d); f}\mathrm{ - function of theta, t, and phi, p, to be plotted t=a..b - domain for theta p=c..d - domain for phi```
Vectors (See page 51.)	```execute with(plots); spacecurve([v],t=a..b,axes=boxed, numpoints=n); [v] - vector in (x,y, z) coordinates as functions of t t=a..b-domain for t axes=boxed - (optional) label axes on outside edges numpoints=n - number of points to compute for graph```

Multiple Commands

Maple has more than one command for some operations. This summary gives guidelines for the multiple commands.

Category	Commands	Guidelines
Declare equation	f:=x->	The created equation is a function of x . Substitution is done by entering $f(a)$. This can be cumbersome when plotting or doing other operations with a function. (See pages 3, 4, and 5.)
	$\mathrm{y}:=$	Names an equation, plot, or anything. The equation may include an equal sign. Using the named expression in plots or other equations is done by just using the given letter. Substitution must be done using the command subs ($\mathbf{x}=\mathrm{a}, \mathrm{y}$) ; . (See pages 17 and 18.)
Derivative	D (f) (x)	Maple uses this command if f is declared $f(x)$. This must be used to declare a new function as a derivative of a given function. (See pages 19 and 46.)
	$\begin{aligned} & \operatorname{diff}(\mathbf{y}, x) ; \\ & \operatorname{diff}(f(x), x) ; \end{aligned}$	Takes the derivative of any expression. The expression may be a named equation or an $\mathrm{f}(\mathrm{x})$. (See page 22.)
	Diff (y, \mathbf{x}) ;	Displays, but does not compute the derivative.
Integral	$\begin{aligned} & \operatorname{int}(y, x) ; \\ & \operatorname{int}(f(x), x) ; \end{aligned}$	Gives the most general antiderivative of any expression. The expression may be a named equation or an $\mathrm{f}(\mathrm{x})$. (See page 23.)
	int (y, x=a. .b) ;	Computes the definite integral on the range $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$. (See page 26.)
	$\begin{aligned} & \text { Int }(y, x) ; \\ & \text { Int }(y, x=a . . b) ; \end{aligned}$	Displays, but does not compute the integral.
Solve equation	solve (f=g, x) ;	Maple gives the exact roots for the equality. The answer may be in rational numbers, radical form, complex numbers, or as "ROOTS" of a given equation in Z . (See page 5.)
	fsolve (f=g, x) ;	Maple gives a decimal approximation for the real roots of the equality. If no real roots exist, no answer is given. (See page 5.)
	fsolve (f=g, $\mathrm{x}=\mathrm{a}$) ;	Maple gives a decimal approximation for the real root nearest $\mathrm{x}=\mathrm{a}$. (See page 6 .)
	fsolve (f=g, x=a. .b) ;	Maple gives a decimal approximation for the real root between $x=a$ and $x=b$. (See page 50.)

Quick Reference of Common Commands

To Do	Command	Comments
Arithmetic	+	Add
	-	Subtract
	*	Multiply
	/	Divide
	sqrt (a) ;	Take square root of a.
	ヘ	Raise to a power
	abs (a) ;	Take absolute value of a.
Clear Maple's memory	restart;	This does not delete the worksheet. Only Maple's memory is cleared. (See page 39.)
Decimal form of number	evalf(n) ;	Changes the given number, n , to a decimal. (See pages 1 and 26.)
Decimal places	Digits: =n;	Sets the Maple display to n decimal places. (See page 39.)
Derivative	diff(y, x) ;	Computes derivative of y with respect to x . (See page x.)
Graph	plot (y, x=a. .b) ;	Graphs the equation, y, on the domain $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$. (See page viii.)
Integrate (indefinite)	int (y, x) ;	Integrates y with respect to x . (See page x.)
Integrate (definite)	int (y, x=a. .b) ;	Computes integral of y from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$. (See page x .)
Substitute	$\begin{aligned} & \mathrm{f}(\mathrm{a}) ; \\ & \operatorname{subs}(\mathrm{x}=\mathrm{a}, \mathrm{f}) ; \end{aligned}$	Substitutes the value a for x. Use $\mathbf{f}(\mathrm{a})$; if the expression was declared using $\mathbf{f}:=\mathbf{x}->$. Use subs ($\mathbf{x}=\mathbf{a}, \mathbf{f}$); if the expression was declared using $\mathrm{f}:=$.
Un-name	unassign('f');	Removes the expression assigned to f from Maple's memory. (See page 2.)

