
Optimization Problems

Concept

To some extent, section 3.6 duplicates section 3.2, where you learned that an absolute
maximum or minimum of a function always occurs at a critical number or at an endpoint
of an interval. One difference is that most of the problems in section 3.6 are stated in a
real world context. There is one other very important difference in the problems in these
two sections. Most of the problems in section 3.6 actually involve two variables. To solve
such a problem, you must somehow reduce your problem to a function of one variable.
This can be done by identifying a relationship between the variables, and using the
relationship to substitute for one of the variables. The extra step of substituting for one of
two variables is the main characteristic that makes the problems in section 3.6 different.

There are a couple of ways to prevent this extra step from confusing you. One is to draw
and label a picture, since most of the problems have a geometric component. Another
way is to work enough problems that the overall structure of the problems becomes
familiar. You will usually (1) draw a picture, (2) identify a function of two variables to
optimize, (3) identify an equation defining the relationship between the variables,
(4) solve the equation for one of the variables and substitute into the function to be
optimized, (5) find critical point(s) of this function of one variable and (6) verify that you
have found the desired extremum. As with any multi-step process, don’t get in too much
of a hurry.

Technique

A can is to have a total surface area of 20 in3.  Find the dimensions that will
maximize the enclosed volume.

At first reading, it may be unclear what the variables are supposed to be or what kind of a
function you’re supposed to work with. This is where a picture with labels helps. We
sketch a cylindrical can with radius r and height h (these are the variables). The problem
statement refers to both surface area and volume, so let’s compute these for a general can.
The can actually consists of three surfaces (top, bottom, sides) so we must add up the
areas of each piece. The top and bottom are circles of radius r (area πr2) and the side
could be unrolled into a rectangle of dimensions 2πr by h (area 2πrh). Thus,

Surface area = πr2  + πr2  + 2πrh = 2πr2  + 2πrh

The volume of a cylinder equals the area of the circular cross-section times the height:

Volume = πr2 h



Now, read the problem again. We have been told that the surface area is supposed to
equal 20. This gives us the equation

2πr2 + 2πrh = 20

We are not given a value for the volume; we are supposed to maximize it. So the volume
πr2 h is our function of two variables. We use the surface area equation to replace one
variable. You are allowed to solve for either variable, so choose the one that looks easier.
In our equation, h only appears once, so we solve for h:

2πrh = 20−2πr2

h = (20−2πr2 )/ 2πr = 10/πr − r

Substituting into the formula for volume, we have the function

V = πr2h = πr2(10/πr − r) = 10r − πr3

To find critical points, compute the derivative of V(r) and set it equal to 0.

V ’(r) = 10 − 3πr2  = 0
r = (10/3π)1/2 = 1.03

We ignore the negative square root since r represents a radius. A radius of about 1.03 is
critical, but does it give a maximum volume, minimum volume or neither? There are two
methods for verifying that we have found the maximum point. First, note that for 0 < r <
1.03, V ’(r) > 0; also, if r > 1.03, V ’(r) < 0. By the First Derivative Test, this says that
there is a (relative) maximum at r=1.03. Since there is only one critical point in the
domain r > 0, the relative maximum must also be the absolute maximum. A different (but
less reliable) method is to graph V(r) and note that the maximum occurs at r=1.03.

We’re not quite finished! Read the problem one last time to see if the question has been
answered. Since the problem asks for the “dimensions” of the can of maximum volume,
that’s what we need for an answer. Our value of r = 1.03 is one dimension, but we also
need the height of the can. From h = 10/πr − r, we can compute h = 2.06. A radius of
1.03” and a height of 2.06” gives the maximum volume.



Extension

Each of the examples in section 3.6 covers a different situation with its own unique
mathematical complications. For example, the highway problem of example 6.6 only has
one variable, so you do not have the extra substitution step. However, a natural question
arises in this problem that is not present in other problems. Specifically, we compare the
broken-line path of minimum cost to a straight-line path. Most of the broken-line
problems (oil pipeline, water line, endurance contest, Washington crossing the Delaware,
etc.) have similar follow-up questions.

You should complete examples of each type of optimization problem that you are going
to be responsible for in your class. Pay special attention to the sequence of steps done to
solve each problem so that you will know how to get started on any problems you end up
working for a grade. As we noted in the example above, you should read the problem
more than once so that you remain clear on what you are supposed to do.


