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3MRI of a knee.

APPLICATIONS OF
DIFFERENTIATION
One relatively new test available to physicians for diagnosing injuries and disease is the
MRI. Magnetic resonance imaging (MRI) is used to visualize internal structures, such as
torn cartilage in a knee. The ability to see the physical status of a knee or an internal organ
without surgery is an invaluable aid to physicians and their patients. However, it still takes
an experienced physician to distinguish the important features of an MRI from insignificant
ones. If you have ever looked at an MRI or even a conventional x-ray, you have probably
been amazed at the details that your physician could quickly identify. In the MRI below,
can you identify any damage to the knee? Of course, it always helps to know what you are
looking for.

The ability to accurately read graphs is one of the primary goals of this chapter. By the
end of section 3.6, you should have a good idea of what the significant features of a graph
are. Although we will be looking only at two-dimensional graphs of functions, the language
and skills that you acquire here will transfer to plots of seismic readings, sonar mappings
of the ocean floor and other graphical displays of information that you may encounter.

Most people do not recognize the vast amount of mathematical computation re-
quired to produce a viewable image from an MRI. In an MRI, magnetic fields and pulses
of radio waves are used to determine the distribution of hydrogen atoms in the body (see
Visualization by R. Friedhoff and W. Benzon for more details). The presence of hydro-
gen atoms, in turn, is deduced from the re-
lease of energy during the magnetization
process. (This is a long way from a stan-
dard x-ray image!) By solving countless
equations and performing lengthy calcu-
lations, a computer transforms the energy
data into an accurate image of the interior
of a human body.

Likewise, it may surprise you how
many calculations we must perform to
draw an accurate graph of a function. At
each stage of the graphing process, we
must solve equations to identify significant
features of the graph. Because of the



central role that equation solving plays in this chapter, we devote the second section to a
discussion of a powerful method that you can use to approximate solutions of difficult
equations.

But, you may ask, if a computer or calculator can do all of the calculations, why do you
need to know what it’s doing? One answer is that most computer algorithms are imperfect
approximations that can occasionally result in significant errors on certain types of prob-
lems. By understanding how such algorithms work, you can anticipate and identify when a
computer is in error. For example, the picture on the right below is a computer enhance-
ment of the out-of-focus picture on the left.

Notice that the picture on the right shows a faint halo around the airplane. This is not
a real ghost or aura or even sound waves, but instead a by-product of the computer algo-
rithm used to sharpen the picture. If you understand the algorithm, you will not misinter-
pret the ghost. A ghost on an airplane is not serious, but the mathematics used to sharpen
the picture is also used to produce MRIs, where a misinterpreted ghost could have serious
consequences. (How would you feel if an MRI appeared to show a tumor that was not
actually there?)

LINEAR APPROXIMATIONS AND L’HÔPITAL’S RULE

For what purpose do you use a scientific calculator? If you think about it, you’ll discover
that there are two distinctly different jobs that calculators do for you. First, they perform
arithmetic operations (addition, subtraction, multiplication and division) much faster than
any of us could hope to do them. It’s not that you don’t know how to multiply 1024 by
1673, but rather that it is time-consuming to carry out this (albeit well-understood) calcu-
lation with pencil and paper. For such problems, calculators are a tremendous convenience,
which none of us would like to live without. Perhaps more significantly, we also use our
calculators to compute values of transcendental functions such as sine, cosine, tangent,
exponentials and logarithms. In the case of these function evaluations, the calculator is
much more than a mere convenience.

If asked to calculate sin(1.2345678) without a calculator, you would probably draw a
blank. Don’t worry, there’s nothing wrong with your background. (Also, don’t worry that
anyone will ever ask you to do this without a calculator.) The problem is that the sine func-
tion is not algebraic. That is, there is no formula for sin x involving only the arithmetic op-
erations. So, how does your calculator “know’’ that sin(1.2345678) ≈ 0.9440056953? In
short, it doesn’t know this at all. Rather, the calculator has a built-in program that generates
approximate values of the sine and other transcendental functions.

In this section, we take a small step into the (very large) world of approximation by
developing a simple approximation method. Although somewhat crude, it points the way

3.1
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y � f (x0) � f �(x0)(x � x0)
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Figure 3.1

Linear approximation of f (x1).

toward more sophisticated approximation techniques to follow later in the text. Our
primary intent here is to give you a taste of how you might approach the problem of
approximation.

Linear Approximations
Suppose we wanted to find an approximation for f (x1), where f (x1) is unknown, but
where f (x0) is known for some x0 “close’’ to x1. For instance, the value of cos(1) is un-
known, but we do know that cos(π/3) = 1

2 exactly and π/3 ≈ 1.047 is “close’’ to 1. We
could always use 1

2 as an approximation to cos(1), but we can do better.
Recall that the tangent line to the curve y = f (x) at x = x0 stays close to the curve near

the point of tangency. Referring to Figure 3.1, notice that if x1 is “close’’ to x0 and we
follow the tangent line at x = x0 to the point corresponding to x = x1, then the y-coordinate
of that point (y1) should be “close’’ to the y-coordinate of the point on the curve y = f (x)

[i.e., f (x1)].
Since the slope of the tangent line to y = f (x) at x = x0 is f ′ (x0), the equation of the

tangent line to y = f (x) at x = x0 is found from

mtan = f ′(x0) = y − f (x0)

x − x0
. (1.1)

Solving equation (1.1) for y gives us

y = f (x0) + f ′(x0)(x − x0). (1.2)

Notice that (1.2) is the equation of the tangent line to the graph of y = f (x) at x = x0. We
give the linear function defined by this equation a name, as follows.

Notice that the y-coordinate y1 of the point on the tangent line corresponding to x = x1

is simply found by substituting x = x1 in equation (1.2). This gives us

y1 = f (x0) + f ′(x0)(x1 − x0). (1.3)

Definition 1.1

The linear (or tangent line) approximation of f (x) at x = x0 is the function
L(x) = f (x0) + f ′(x0)(x − x0).
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y = cos x and the linear
approximation at x0 = π/3.

We define the increments �x and �y by

�x = x1 − x0

and

�y = f (x1) − f (x0).

Using this notation, equation (1.3) gives us the approximation

(1.4)

We illustrate this in Figure 3.2. We sometimes rewrite (1.4) by subtracting f (x0) from both
sides, to yield

�y = f (x1) − f (x0) ≈ f ′(x0)�x = dy, (1.5)

where dy = f ′(x0)�x is called the differential of y. When using this notation, we also
define dx, the differential of x, by dx = �x, so that by (1.5),

dy = f ′(x0) dx .

f (x1) ≈ y1 = f (x0) + f ′(x0)�x .

�x

f (x1)

y1

f (x0)

x0 x1

x

y

�y

dy

y � f (x0) � f �(x0)(x � x0)

y � f (x)

Figure 3.2

Increments and differentials.

We can use linear approximations to produce approximate values of transcendental
functions, as in the following example.

Find the linear approximation to f (x) = cos x at x0 = π/3 and use it to approximate
cos(1).

Solution From Definition 1.1, the linear approximation is defined as L(x) =
f (x0) + f ′(x0)(x − x0). Here, x0 = π/3, f (x) = cos x and f ′(x) = −sin x. So, we have

L(x) = cos

(
π

3

)
− sin

(
π

3

)(
x − π

3

)
= 1

2
−

√
3

2

(
x − π

3

)
.

In Figure 3.3, we show a graph of y = cos x and the linear approximation to cos x
for x0 = π/3. Notice that the linear approximation (i.e., the tangent line at x0 = π/3)
stays close to the graph of y = cos x only for x close to π/3. In fact, for x < 0 or x > π,
the linear approximation is obviously quite poor. This is typical of linear approximations
(tangent lines). They generally stay close to the curve only nearby the point of tangency.

Finding a Linear ApproximationExample 1.1



Section 3.1 Linear Approximations and L’Hôpital’s Rule 245

y

x

�1

1

1�1

Figure 3.4

y = sin x and y = x.

Although we gave you the value of x0 here, observe that if you had been given the
choice, one reason you might choose x0 = π

3 is that π
3 is the value closest to 1 at which

we know the value of the cosine exactly. Finally, an estimate of cos(1) is

L(1) = 1

2
−

√
3

2

(
1 − π

3

)
≈ 0.5409.

Notice that on your calculator you would find cos(1) ≈ 0.5403, so that we have found a
fairly good approximation to the desired value.

�

In the following example, we derive a useful approximation to sin x, valid for x close
to 0. This approximation is significant in part because it is often used in applications in
physics and engineering to simplify equations involving sin x.

Find the linear approximation of f (x) = sin x, for x close to 0.

Solution Here, f ′(x) = cos x, so that from Definition 1.1, we have

sin x ≈ L(x) = f (0) + f ′(0) (x − 0) = sin 0 + cos 0(x) = x .

This says that for x close to 0, sin x ≈ x. We illustrate this in Figure 3.4, where we show
graphs of both y = sin x and y = x.

�

Pay close attention to Figure 3.4; notice that the graph of y = x stays close to the graph
of y = sin x only in the vicinity of x = 0. This indicates that the approximation sin x ≈ x is
valid only for x close to 0. Also note that the farther x gets from 0, the worse the approxi-
mation becomes. Take another look at Figure 3.1, to convince yourself that this is generally
true. This becomes even more apparent in the following example, where we also illustrate
the use of the increments �x and �y.

Use a linear approximation to approximate 3
√

8.02,
3
√

8.07, 3
√

8.15 and 3
√

25.2.

Solution Here we are approximating values of the function f (x) = 3
√

x = x1/3.
So, f ′(x) = 1

3 x−2/3. Of course, the closest number to any of 8.02, 8.07 or 8.15 whose
cube root we know exactly is 8. Now,

f (8.02) = f (8) + [ f (8.02) − f (8)]

= f (8) + �y.

Add and subtract f (8).

(1.6)

From (1.5), we have

�y ≈ dy = f ′(8)�x

=
(

1

3

)
8−2/3(8.02 − 8) = 1

600
. Since �x = 8.02 − 8. (1.7)

Using (1.6) and (1.7), we get

f (8.02) ≈ f (8) + dy = 2 + 1

600
≈ 2.0016667,

Linear Approximation to Some Cube RootsExample 1.3

Linear Approximation of sin xExample 1.2



while your calculator accurately returns 3
√

8.02 ≈ 2.0016653. Similarly, we get

f (8.07) ≈ f (8) + 1

3
8−2/3(8.07 − 8) ≈ 2.0058333

and

f (8.15) ≈ f (8) + 1

3
8−2/3(8.15 − 8) ≈ 2.0125,

while your calculator returns 3
√

8.07 ≈ 2.005816 and 3
√

8.15 ≈ 2.012423, respectively.
Finally, notice that to approximate 3

√
25.2, 8 is not the closest number to 25.2

whose cube root we know exactly. Since 25.2 is much closer to 27 than to 8, we write

f (25.2) = f (27) + �y ≈ f (27) + dy = 3 + dy.

In this case,

dy = f ′(27)�x = 1

3
27−2/3(25.2 − 27) = 1

3

(
1

9

)
(−1.8) = − 1

15

and we have

f (25.2) ≈ 3 + dy = 3 − 1

15
= 2.9333333,

compared to the value of 2.931794, produced by your calculator. It is important to rec-
ognize here that the farther the value of x gets from the point of tangency, the worse the
approximation tends to be. You can see this clearly in Figure 3.5, where the linear
approximation gets farther away from 3

√
x , as x gets farther from 8.

�

Our first three examples were intended to familiarize you with the technique and to
give you a feel for how good (or bad) linear approximations tend to be. In the following ex-
ample, there is no exact answer to compare with the approximation. Our use of the linear
approximation here is referred to as linear interpolation.

The price of an item affects consumer demand for that item. Suppose that based on mar-
ket research, a company estimates that f (x) thousand small cameras can be sold at the
price of $x, as given in the accompanying table. Estimate the number of cameras that
can be sold at $7.

Solution The closest x-value to x = 7 in the table is x = 6. (In other words, this is
the closest value of x at which we know the value of f (x).) The linear approximation of
f (x) at x = 6 would look like

L(x) = f (6) + f ′(6)(x − 6).

From the table, we know that f (6) = 84, but we do not know f ′ (6). Further, we can’t
compute f ′ (x), since we don’t have a formula for f (x). The best we can do with the
given data is approximate the derivative by

f ′(6) ≈ f (10) − f (6)

10 − 6
= 60 − 84

4
= −6.

The linear approximation is then

L(x) = 84 − 6(x − 6).

Using a Linear Approximation to Perform
Linear InterpolationExample 1.4
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y = 3
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x and the linear
approximation at x0 = 8.

x 6 10 14

f (x) 84 60 32
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Linear interpolation.

Using this, we estimate that the number of cameras sold at x = 7 would be L(7) =
84 − 6 = 78 thousand. That is, we would expect to sell approximately 78 thousand
cameras at a price of $7. We show a graphical interpretation of this in Figure 3.6, where
the straight line is the linear approximation (in this case, the secant line joining the first
two data points).

�

L’Hôpital’s Rule
We close this section by using linear approximations to suggest a simple method for com-
puting some challenging limits. We develop a special case of an important result known as
L’Hôpital’s Rule, which we more thoroughly develop in section 7.6.

Look back at section 2.5, where we struggled with the limit lim
x→0

sin x
x ,ultimately resolving

it only with an intricate geometric argument. This limit has the indeterminate form 0
0 (i.e.,

the limits of the numerator and the denominator are both 0), but there is no way to simplify
the numerator or denominator to simplify the expression. More generally, we’d like to

evaluate lim
x→c

f (x)

g(x)
, where lim

x→c
f (x) = lim

x→c
g(x) = 0. We can use linear approximations

to suggest a solution, as follows. 

If both functions are differentiable at x = c, then they are also continuous at x = c, so that
f (c) = lim

x→c
f (x) = 0 and g (c) = lim

x→c
g(x) = 0. We now have the linear approximations

f (x) ≈ f (c) + f ′(c)(x − c) = f ′(c)(x − c)
and

g(x) ≈ g(c) + g′(c)(x − c) = g′(c)(x − c),

where we have used the fact that f (c) = 0 and g(c) = 0. As we have seen, the approxima-
tion should improve as x approaches c, so we would expect that if the limits exist,

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(c)(x − c)

g′(c)(x − c)
= lim

x→c

f ′(c)
g′(c)

= f ′(c)
g′(c)

,

assuming that g′(c) 	= 0. Note that if f ′(x) and g′(x) are continuous at x = c and g′(c) 	= 0, 

then 
f ′(c)
g′(c)

= lim
x→c

f ′(x)

g′(x)
. We summarize this in the following result.

Here, we prove only the special case where f, f ′, g and g′ are all continuous on all of
(a, b) and g′(c) 	= 0, while leaving the more intricate general case for Appendix A. First,
recall the alternative form of the definition of derivative (found in section 2.2):

f ′(c) = lim
x→c

f (x) − f (c)

x − c
.

Theorem 1.1 (L’Hôpital’s Rule)

Suppose that f and g are differentiable on the interval (a, b) except possibly at some
fixed point c in (a, b) and that g′(x) 	= 0 on (a, b) except possibly at x = c. If lim

x→c
f (x) =

lim
x→c

g(x) = 0 and lim
x→c

f ′(x)

g′(x)
exists, then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

H I S T O R I C A L N O T E S

Guillaume de l’Hôpital
(1661–1704) A French
mathematician who first published
the result now known as
L’Hôpital’s Rule. Born into
nobility, l’Hôpital was taught
calculus by the brilliant
mathematician Johann Bernoulli. A
competent mathematician, l’Hôpital
is best known as the author of the
first calculus textbook. L’Hôpital
was a friend and patron of many of
the top mathematicians of the
seventeenth century.
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y = 1 − cos x

x2
.

Working backward, we have by continuity that

lim
x→c

f ′(x)

g′(x)
= f ′(c)

g′(c)
=

lim
x→c

f (x) − f (c)

x − c

lim
x→c

g(x) − g(c)

x − c

= lim
x→c

f (x) − f (c)

x − c
g(x) − g(c)

x − c

= lim
x→c

f (x) − f (c)

g(x) − g(c)
.

Further, since f and g are continuous at x = c, we have that

f (c) = lim
x→c

f (x) = 0 and g(c) = lim
x→c

g(x) = 0.

It now follows that

lim
x→c

f ′(x)

g′(x)
= lim

x→c

f (x) − f (c)

g(x) − g(c)
= lim

x→c

f (x)

g(x)
,

which is what we wanted.
With this result, certain limits become quite easy to evaluate.

Evaluate lim
x→0

sin x
x .

Solution Again, this limit has the indeterminate form 0
0 and f (x) = sin x and

g(x) = x are both continuous and differentiable everywhere. Finally, g′(x) = d
dx

(x) =
1 	= 0, so that all of the hypotheses of L’Hôpital’s Rule are satisfied. From the graph in
Figure 3.7, it appears that the limit is approximately 1. We can confirm this suspicion
with L’Hôpital’s Rule. We have

lim
x→0

sin x

x
= lim

x→0

d

dx
(sin x)

d

dx
(x)

= lim
x→0

cos x

1
= 1

1
= 1,

as we proved using a complicated geometric argument in section 2.5.

�

For some limits, you must apply L’Hôpital’s Rule more than once.

Evaluate lim
x→0

1 − cos x
x2 .

Solution Again, this has the indeterminate form 0
0 and it is a simple matter to

verify that the hypotheses of L’Hôpital’s Rule are satisfied. In this case, the graph in
Figure 3.8 indicates the limit to be approximately 0.5. From L’Hôpital’s Rule, we have

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x
,

which again has the indeterminate form 0
0 . In this case, we can verify that the hypothe-

ses of L’Hôpital’s Rule are satisfied for this new limit problem. Applying this again, it
then follows that

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x
= lim

x→0

cos x

2
= 1

2
.

�

A Limit Requiring Two Applications of L’Hôpital’s RuleExample 1.6

Revisiting an Old LimitExample 1.5y

x

0.4

1

�2 2

Figure 3.7

y = sin x

x
.
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y = x2

ex − 1
.

A very common error is to apply L’Hôpital’s Rule indiscriminately, without first checking that the
limit has the indeterminate form 0

0 . Be very careful here.

Find the mistake in the string of equalities

lim
x→0

x2

ex − 1
= lim

x→0

2x

ex
= lim

x→0

2

ex
= 2

1
= 2.

Solution From the graph in Figure 3.9, we can see that the limit is approximately 

0, so 2 appears to be incorrect. The first limit lim
x→0

x2

ex − 1
has the form 0

0 and the func-

tions f (x) = x2 and g(x) = ex − 1 satisfy the hypotheses of L’Hôpital’s Rule. There-

fore, the first equality: lim
x→0

x2

ex − 1
= lim

x→0

2x
ex holds. However, notice that lim

x→0

2x
ex =

0
1

= 0 and L’Hôpital’s Rule does not apply here. The correct evaluation is then

lim
x→0

x2

ex − 1
= lim

x→0

2x

ex
= 0

1
= 0.

�

An Erroneous Use of L’Hôpital’s RuleExample 1.7

Remark 1.1

1. We constructed a variety of linear approximations in this
section. Approximations can be “good’’ approximations

or “bad’’ approximations. Explain why it can be said that y = x
is a good approximation to y = sin x near x = 0 but y = 1 is not
a good approximation to y = cos x near x = 0. (Hint: Look at
the graphs of y = sin x and y = x on the same axes, then do the
same with y = cos x and y = 1.)

2. Briefly explain in terms of tangent lines why the ap-
proximation in example 1.2 gets worse as x gets farther

from 8.

3. A friend is struggling with L’Hôpital’s Rule. When asked
to work a problem, your friend says, “First, I plug in for

x and get 0 over 0. Then I use the quotient rule to take the de-
rivative. Then I plug x back in.” Explain to your friend what the
mistake is and how to correct it.

4. Suppose that two runners begin a race from the starting
line, with one runner initially going twice as fast as

the other. If f(t) and g(t) represent the positions of the run-
ners at time t ≥ 0, explain why we can assume that f (0) =
g(0) = 0 and lim

t→0+
f ′(t)
g′(t)

= 2. Explain in terms of the runners’

positions why L’Hôpital’s Rule holds: that is, lim
t→0

f (t)

g(t)
= 2.

EXERCISES 3.1

In exercises 5–12, find the linear approximation to f (x) at x == x0.
Graph the function and its linear approximation.

5. f (x) = √
x, x0 = 1 6. f (x) = (x + 1)1/3, x0 = 0

7. f (x) = √
2x + 9, x0 = 0 8. f (x) = 2/x, x0 = 1

9. f (x) = sin 3x, x0 = 0 10. f (x) = sin x, x0 = π

11. f (x) = e2x , x0 = 0 12. f (x) = ex 2
, x0 = 0

In exercises 13–16, find the linear approximation at x == 0 to show
that the following commonly used approximations are valid for
“small’’ x. Compare the approximate and exact values for x ==
0.01, x == 0.1 and x == 1.

13. tan x ≈ x 14.
√

1 + x ≈ 1 + 1
2 x

15.
√

4 + x ≈ 2 + 1
4 x 16. ex ≈ 1 + x

In exercises 17–22, use linear approximations to estimate the
quantity.

17. sin 1 18. sin 9
4

19. 4
√

16.04 20. 4
√

16.08

21. 4
√

16.16 22. ln 2.8 (Hint: ln e = 1.)



23. For exercises 19–21, compute the error (the absolute value of
the difference between the exact value and the linear approxi-
mation).

24. Thinking of exercises 19–21 as numbers of the form 4
√

16 + �x ,
denote the errors as e(�x) (where �x = 0.04, �x = 0.08 and
�x = 0.16). Based on these three computations, determine a
constant c such that e(�x) ≈ c(�x)2.

25. Use a computer algebra system (CAS) to determine the range
of x’s in exercise 13 for which the approximation is accurate to
within 0.01. That is, find x such that |tan x − x| < 0.01.

26. Use a CAS to determine the range of x’s in exercise 16 for
which the approximation is accurate to within 0.01. That is,
find x such that |ex − (1 + x)| < 0.01.

In exercises 27–30, use linear interpolation to estimate the desired
quantity.

27. Acompany estimates that f (x) thousand software games can be
sold at the price of $x as given in the table.

Estimate the number of games that can be sold at (a) $24 and
(b) $36.

28. A vending company estimates that f (x) cans of soft drink
can be sold in a day if the temperature is x°F as given in the
table. 

Estimate the number of cans that can be sold at (a) 72° and
(b) 94°.

29. An animation director enters the position f (t) of a char-
acter’s head after t frames of the movie as given in the table.

If the computer software uses interpolation to determine the
intermediate positions, determine the position of the head at
frame number (a) 208 and (b) 232.

t 200 220 240

f (t) 128 142 136

x 60 80 100

f (x) 84 120 168

x 20 30 40

f (x) 18 14 12
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30. A sensor measures the position f (t) of a particle t microseconds
after a collision as given in the table.

Estimate the position of the particle at time (a) t = 8 and 
(b) t = 12.

In exercises 31–42, use L’Hôpital’s Rule to evaluate the limit.

31. lim
x→2

x − 2

x2 − 4
32. lim

x→− 1

x + 1

x2 + 4x + 3

33. lim
x→0

x3

sin x − x
34. lim

x→0

x3

x − tan x

35. lim
x→1

x − 1

ln x
36. lim

x→1

ln x

x2

37. lim
x→0

ex − 1

cos x − 1
38. lim

x→0+

√
x

ln(x + 1)

39. lim
x→0

x2

cos x − x
40. lim

x→0

ex − 1 − x

x2

41. lim
x→1

ln(ln x)

ln x
42. lim

x→0

sin(sin x)

sin x

43. Compute lim
x→0

sin x2

x2
and compare your result to that of exam- 

ple 1.5.

44. Compute lim
x→0

1 − cos x2

x4
and compare your result to that of

example 1.6.

45. Use your results from exercises 43 and 44 to evaluate

lim
x→0

sin x3

x3
and lim

x→0

1 − cos x3

x6
without doing any calculations.

46. If lim
x→0

f (x)

g(x)
= L , what can be said about lim

x→0

f (x2)

g(x2)
? Explain

why knowing that lim
x→a

f (x)

g(x)
= L for a 	= 0 does not tell you

anything about lim
x→a

f (x2)

g(x2)
.

47. Find all errors in the string

lim
x→0

cos x

x2
= lim

x→0

−sin x

2x
= lim

x→0

−cos x

2
= −1

2
.

Then determine the correct value of the limit.

48. Find all errors in the string

lim
x→0

sin x

x2
= lim

x→0

cos x

2x
� lim

x→0

−sin x

2
= 0.

Then determine the correct value of the limit.

t 5 10 15

f (t) 8 14 18
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49. Starting with lim
x→0

sin 3x

sin 2x
, cancel sin to get lim

x→0

3x

2x
, then cancel 

x’s to get 3
2 . This answer is correct. Are either of the steps used 

valid? Use linear approximations to argue that the first step is
likely to give a correct answer.

50. Evaluate lim
x→0

sin nx

sin mx
for nonzero constants n and m.

51. Evaluate lim
x→0

ecx − 1

x
for any constant c.

52. Evaluate lim
x→0

tan cx − cx

x3
for any constant c.

53. In section 1.1, we briefly discussed the position of a baseball
thrown with the unusual knuckleball pitch. The left/right posi-
tion (in feet) of a ball thrown with spin rate ω and a particular
grip at time t seconds is f (ω) = (2.5/ω)t − (2.5/4ω2) sin 4ωt.
Treating t as a constant and ω as the variable (change to x if you
like), show that lim

ω→0
f (ω) = 0 for any value of t. (Hint: Find a

common denominator and use L’Hôpital’s Rule.) Conclude that
this pitch does not move left or right at all.

54. In this exercise, we look at a knuckleball thrown with a differ-
ent grip than that of exercise 53. The left or right position (in
feet) of a ball thrown with spin rate ω and this new grip at time
t seconds is f (ω) = (2.5/4ω2) − (2.5/4ω2) sin(4ωt + π/2).
Treating t as a constant and ω as the variable (change to x if you
like), find lim

ω→0
f (ω). Your answer should depend on t. By

graphing this function of t, you can see the path of the pitch
(use a domain of 0 ≤ t ≤ 0.68). Describe this pitch.

55. A water wave of length L meters in water of depth d meters has
velocity v satisfying the equation 

v2 = 4.9L

π

e2π d/L − e−2π d/L

e2π d/L + e−2π d/L
.

Treating L as a constant and thinking of v2 as a function f (d),
use a linear approximation to show that f (d) ≈ 9.8d for small
values of d. That is, for small depths the velocity of the wave is
approximately 

√
9.8d and is independent of the wavelength L.

56. Planck’s law states that the energy density of blackbody
radiation of wavelength x is given by

f (x) = 8πhcx−5

ehc/(kT x ) − 1
.

Use the linear approximation in exercise 16 to show that
f (x) ≈ 8πkT/x4, which is known as the Rayleigh-Jeans
law.

57. In this exercise, we introduce Taylor series (explored
in depth in Chapter 8). Start with the limit 

lim
x→0

sin x

x
= 1. Briefly explain why this means that for x close 

to 0, sin x ≈ x . Graph y = sin x and y = x to see why this
is true. If you look far enough away from x = 0, the graph of
y = sin x eventually curves noticeably. We will find poly-
nomials of higher order to match this curving. Show that 

lim
x→0

sin x − x

x2
= 0. This means that sin x − x ≈ 0 or (again) 

sin x ≈ x . Show that lim
x→0

sin x − x

x3
= − 1

6 . This says that if x  

is close to 0, then sin x − x ≈ − 1
6 x3 or sin x ≈ x − 1

6 x3 . Graph

these two functions to see how well they match up. To continue,

compute lim
x→0

sin x − (x − x3/6)

x4
and lim

x→0

sin x − f (x)

x5
for the 

appropriate approximation f (x). At this point, look at the pat-
tern of terms you have (Hint: 6 = 3! and 120 = 5!). Using this
pattern, approximate sin x with an 11th-degree polynomial and
graph the two functions.

NEWTON’S METHOD

We now return to the question of finding zeros of a function. In section 1.3, we introduced
the method of bisections as a tedious, yet reliable, method of finding zeros of continuous
functions. In this section, we explore a method which is usually much more efficient than
bisections. We are again looking for values of x such that f (x) = 0. These values are called
roots of the equation f (x) = 0 or zeros of the function f. If

f (x) = ax2 + bx + c,

there is no challenge to doing this, since we have an explicit formula for the solution(s) (the
quadratic formula). But, what if we want to find zeros of

f (x) = tan x − x?

3.2


