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49. Starting with lim
x→0

sin 3x

sin 2x
, cancel sin to get lim

x→0

3x

2x
, then cancel 

x’s to get 3
2 . This answer is correct. Are either of the steps used 

valid? Use linear approximations to argue that the first step is
likely to give a correct answer.

50. Evaluate lim
x→0

sin nx

sin mx
for nonzero constants n and m.

51. Evaluate lim
x→0

ecx − 1

x
for any constant c.

52. Evaluate lim
x→0

tan cx − cx

x3
for any constant c.

53. In section 1.1, we briefly discussed the position of a baseball
thrown with the unusual knuckleball pitch. The left/right posi-
tion (in feet) of a ball thrown with spin rate ω and a particular
grip at time t seconds is f (ω) = (2.5/ω)t − (2.5/4ω2) sin 4ωt.
Treating t as a constant and ω as the variable (change to x if you
like), show that lim

ω→0
f (ω) = 0 for any value of t. (Hint: Find a

common denominator and use L’Hôpital’s Rule.) Conclude that
this pitch does not move left or right at all.

54. In this exercise, we look at a knuckleball thrown with a differ-
ent grip than that of exercise 53. The left or right position (in
feet) of a ball thrown with spin rate ω and this new grip at time
t seconds is f (ω) = (2.5/4ω2) − (2.5/4ω2) sin(4ωt + π/2).
Treating t as a constant and ω as the variable (change to x if you
like), find lim

ω→0
f (ω). Your answer should depend on t. By

graphing this function of t, you can see the path of the pitch
(use a domain of 0 ≤ t ≤ 0.68). Describe this pitch.

55. A water wave of length L meters in water of depth d meters has
velocity v satisfying the equation 

v2 = 4.9L

π

e2π d/L − e−2π d/L

e2π d/L + e−2π d/L
.

Treating L as a constant and thinking of v2 as a function f (d),
use a linear approximation to show that f (d) ≈ 9.8d for small
values of d. That is, for small depths the velocity of the wave is
approximately 

√
9.8d and is independent of the wavelength L.

56. Planck’s law states that the energy density of blackbody
radiation of wavelength x is given by

f (x) = 8πhcx−5

ehc/(kT x ) − 1
.

Use the linear approximation in exercise 16 to show that
f (x) ≈ 8πkT/x4, which is known as the Rayleigh-Jeans
law.

57. In this exercise, we introduce Taylor series (explored
in depth in Chapter 8). Start with the limit 

lim
x→0

sin x

x
= 1. Briefly explain why this means that for x close 

to 0, sin x ≈ x . Graph y = sin x and y = x to see why this
is true. If you look far enough away from x = 0, the graph of
y = sin x eventually curves noticeably. We will find poly-
nomials of higher order to match this curving. Show that 

lim
x→0

sin x − x

x2
= 0. This means that sin x − x ≈ 0 or (again) 

sin x ≈ x . Show that lim
x→0

sin x − x

x3
= − 1

6 . This says that if x  

is close to 0, then sin x − x ≈ − 1
6 x3 or sin x ≈ x − 1

6 x3 . Graph

these two functions to see how well they match up. To continue,

compute lim
x→0

sin x − (x − x3/6)

x4
and lim

x→0

sin x − f (x)

x5
for the 

appropriate approximation f (x). At this point, look at the pat-
tern of terms you have (Hint: 6 = 3! and 120 = 5!). Using this
pattern, approximate sin x with an 11th-degree polynomial and
graph the two functions.

NEWTON’S METHOD

We now return to the question of finding zeros of a function. In section 1.3, we introduced
the method of bisections as a tedious, yet reliable, method of finding zeros of continuous
functions. In this section, we explore a method which is usually much more efficient than
bisections. We are again looking for values of x such that f (x) = 0. These values are called
roots of the equation f (x) = 0 or zeros of the function f. If

f (x) = ax2 + bx + c,

there is no challenge to doing this, since we have an explicit formula for the solution(s) (the
quadratic formula). But, what if we want to find zeros of

f (x) = tan x − x?

3.2



This function is not algebraic and there are no formulas available for finding the zeros.
Even so, we can clearly see zeros in Figure 3.10 (in fact, there are infinitely many of them).
The question is, how are we to find them?

In general, if we wish to find approximate solutions to f (x) = 0, we first make a rea-
sonable guess as to the location of a solution. We will call this an initial guess, denoted x0.
Once again, since the tangent line to y = f (x) at x = x0 tends to hug the curve, we can fol-
low the tangent line to where it intersects the x-axis (see Figure 3.11).

Notice that this appears to provide an improved approximation to the zero. The equa-
tion of the tangent line to y = f (x) at x = x0 is given by the linear approximation at x0

[see equation (1.2)],

y = f (x0) + f ′(x0)(x − x0). (2.1)

We denote the x-intercept of the tangent line by x1 [found by setting y = 0 in (2.1)]. We
then have 

0 = f (x0) + f ′(x0)(x1 − x0)

and, solving this for x1, we get

x1 = x0 − f (x0)

f ′
(x0)

.

If we repeat this process, using x1 as our new guess, we should produce an improved
approximation, 

x2 = x1 − f (x1)

f ′
(x1)

and so on (see Figure 3.11). In this way, we generate a sequence of successive approxi-
mations determined by

(2.2)

This procedure is called the Newton-Raphson method, or simply Newton’s method. If
Figure 3.11 is any indication, xn should get closer and closer to a zero as n increases.

Newton’s method is generally a very fast, accurate method for approximating the zeros
of a function, as we illustrate with the following example.

xn+1 = xn − f (xn)

f ′
(xn)

, for n = 0, 1, 2, 3, . . . .

252 Chapter 3 Applications of Differentiation

H I S T O R I C A L N O T E S

Sir Isaac Newton (1642–1727)
An English mathematician and
scientist known as the co-inventor
of calculus. In a 2-year period from
1665 to 1667, Newton made major
discoveries in several areas of
calculus, as well as optics and the
law of gravitation. Newton’s
mathematical results were not
published in a timely fashion.
Instead, techniques such as
Newton’s method were quietly
introduced as useful tools in his
scientific papers. Newton’s
Mathematical Principles of Natural
Philosophy is widely regarded as
one of the greatest achievements of
the human mind.
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y = tan x − x.
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Newton’s method.



Find a zero of f (x) = x5 − x + 1.

Solution From Figure 3.12, it appears as if the only zero of f is located between
x = −2 and x = −1. We further observe that f (−1) = 1 > 0 and f (−2) = −29 < 0.

Since f is continuous (all polynomials are continuous!), the Intermediate Value Theorem
(Theorem 3.4 in section 1.3) says that f must have a zero on the interval (−2,−1).

Further, because the zero appears to be closer to x = −1, we make the initial guess
x0 = −1. Finally, f ′(x) = 5x4 − 1 and so, Newton’s method gives us

xn+1 = xn − f (xn)

f ′(xn)

= xn − x5
n − xn + 1

5x4
n − 1

, n = 0, 1, 2, . . . .

Using the initial guess x0 = −1, we get 

x1 = −1 − (−1)5 − (−1) + 1

5(−1)4 − 1

= −1 − 1

4
= −5

4
.

Likewise, from x1 = −5

4
, we get the improved approximation 

x2 = −5

4
−

(
−5

4

)5

−
(

−5

4

)
+ 1

5

(
−5

4

)4

− 1

= −1.178459394

and so on, we find that 

x3 = −1.167537384,

x4 = −1.167304083

and

x5 = −1.167303978 = x6.

Since x5 = x6, we will make no further progress by calculating additional steps. As a
final check on the accuracy of our approximation, we compute 

f (x6) ≈ 3 × 10−12.

Since this is very close to zero, we say that x6 = −1.167303978 is an approximate zero
of f.

�

You can bring Newton’s method to bear on a variety of approximation problems. As
we illustrate in the following example, you may first need to rephrase the problem as a
rootfinding problem.

Using Newton’s Method to Approximate a ZeroExample 2.1
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Figure 3.12

y = x5 − x + 1.



Use Newton’s method to approximate 
3
√

7.

Solution Recall that we can use a linear approximation for a problem like this.
However, Newton’s method will quickly provide us with an accurate approximation.
Recall that Newton’s method is used to solve equations of the form f (x) = 0. We can
rewrite the current problem in this form, as follows. Suppose x = 3

√
7. Then, x3 = 7,

which can be rewritten as

f (x) = x3 − 7 = 0.

Here, f ′(x) = 3x2 and we obtain an initial guess from a graph of y = f (x) (see
Figure 3.13). Notice that there is a zero near x = 2 and so we take x0 = 2. Newton’s
method then yields

x1 = 2 − 23 − 7

3(22)
= 23

12
≈ 1.916666667.

Continuing this process, we have 

x2 ≈ 1.912938458
and

x3 ≈ 1.912931183 ≈ x4.

Further,
f (x4) ≈ −5 × 10−12

and so, x4 is an approximate zero of f. This also says that 
3
√

7 ≈ 1.912931183.

Compare this with the value of 
3
√

7 produced by your calculator, to see how very accu-
rate Newton’s method was here.

�

Although it seemed to be very efficient in the last two examples, Newton’s method does not always
work. We urge you to make sure that the values coming from the method are getting progressively
closer and closer together (zeroing-in, we hope, on the desired solution). Don’t stop until you’ve
reached the limits of accuracy of your computing device. Also, be sure to compute the value of the
function at the suspected approximate zero. If the function value is not close to zero, do not accept
the value as an approximate zero.

As we illustrate in the following example, Newton’s method requires a good initial
guess in order to find an accurate approximation.

Use Newton’s method to find an approximate zero of f (x) = x3 − 3x2 + x − 1.

Solution From the graph in Figure 3.14, there appears to be a zero on the interval
(2, 3). If you were to use the (not particularly good) initial guess x0 = 1, you would get
x1 = 0, x2 = 1, x3 = 0 and so on. Try this for yourself. Newton’s method is sensitive to
the initial guess and you just made a bad initial guess. If you had instead started with the
improved initial guess x0 = 2, Newton’s method would have quickly converged to the
approximate zero 2.769292354. (Again, try this for yourself.)

�

The Effect of a Bad Guess on Newton’s MethodExample 2.3

Remark 2.1

Using Newton’s Method to Approximate a Cube RootExample 2.2
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y = x3 − 3x2 + x − 1.
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Figure 3.13

y = x3 − 7.



As we saw in example 2.3, a poor initial guess may have disastrous consequences.
However, simply picking a good initial guess will not guarantee the rapid convergence of
Newton’s method. For some functions, the convergence will be slow no matter how good
your initial guess is. By slow convergence, we mean that it takes many iterations to see sig-
nificant improvement in the approximation.

Use Newton’s method with (a) x0 = −2, (b) x0 = −1 and (c) x0 = 0 to try to locate the

zero of f (x) = (x − 1)2

x2 + 1
.

Solution Of course, there’s no mystery here: f has only one zero, located at x = 1.

But, watch what happens if we try to use Newton’s method with the specified guesses.
(a) If we take x0 = −2 and apply Newton’s method, we calculate the values in the

accompanying table.
Obviously, the Newton’s method iterations are blowing up for the given initial

guess. To see why, look at Figure 3.15, which shows the graphs of both y = f (x) and
the tangent line at x = −2. Notice that if you follow the tangent line to where it inter-
sects the x-axis, you will be going away from the zero (far away). Since all of the tan-
gent lines for x ≤ −2 have positive slope [compute f ′(x) to see why this is true], each
subsequent step takes you farther from the zero. (Draw your own graph showing several
tangent lines to see why this is true.) 

(b) If we use the improved initial guess x0 = −1, note that we cannot even compute
x1. In this case, f ′(x0) = 0 and so, Newton’s method fails. Notice that graphically, this
means that the tangent line to y = f (x) at x = −1 is horizontal (see Figure 3.16), so
that the tangent line never intersects the x-axis.

(c) With the even better initial guess x0 = 0, we obtain the successive
approximations in the following table.

Finally, we happened upon an initial guess for which Newton’s method converged
to the root x = 1. What is unusual here is that the successive approximations shown in
the table are converging to 1 much more slowly than in previous examples. By com-
parison, note that in example 2.1, the iterations stop changing at x5. Here, x5 is not par-
ticularly close to the desired zero of f (x). In fact, in this example, x12 is not as close
to the zero as x5 is in example 2.1. We look further into this type of behavior in the
exercises.

�

Unusually Slow Convergence for Newton’s MethodExample 2.4
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Newton’s method iterations for
x0 = −2.

y

x
�1

1

Figure 3.16

y = (x − 1)2

x2 + 1
and the tangent line

at x = −1.

x

y

�2

1

Figure 3.15

y = (x − 1)2

x2 + 1
and the tangent line

at x = −2.

1 −9.5

2 −65.9

3 −2302

4 −2654301

5 −3.5 × 1012

6 −3.1 × 1024

n xn

Newton’s method iterations for x0 = 0.

1 0.5 7 0.9881719

2 0.70833 8 0.9940512

3 0.85653 9 0.9970168

4 0.912179 10 0.9985062

5 0.95425 11 0.9992525

6 0.976614 12 0.9996261

n xn n xn



Despite the small problems experienced in examples 2.3 and 2.4, you should view
Newton’s method as a generally reliable and efficient method of locating zeros approxi-
mately. Just use a bit of caution and common sense. If the successive approximations are
converging to some value that does not appear consistent with the graph, then you need to
scrutinize your results more carefully and perhaps try some other initial guesses.
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9. x4 − 3x2 + 1 = 0, x0 = 1

10. x4 − 3x2 + 1 = 0, x0 = −1

In exercises 11–20, use Newton’s method to find an approximate
root (at least six-digit accuracy). Sketch the graph and explain
how you determined your initial guess.

11. x3 + 4x2 − 3x + 1 = 0 12. x4 − 4x3 + x2 − 1 = 0

13. x5 + 3x3 + x − 1 = 0 14. x3 + 2x + 1 = 0

15. cos x − x = 0 16. x − e−x = 0

17. sin x = x2 − 1 18. cos x2 = x

19. ex = −x 20. e−x = √
x

In exercises 21–26, Newton’s method fails. Explain why the
method fails and, if possible, find a root by correcting the problem.

21. 4x3 − 7x2 + 1 = 0, x0 = 0

22. 4x3 − 7x2 + 1 = 0, x0 = 1

23. x2 + 1 = 0, x0 = 0

24. x2 + 1 = 0, x0 = 1

25.
4x2 − 8x + 1

4x2 − 3x − 7
= 0, x0 = −1

26.

(
x + 1

x − 2

)1/3

= 0, x0 = 0.5

27. Show that Newton’s method applied to x2 − c = 0 (where
c > 0 is some constant) produces the iterative scheme
xn+1 = 1

2 (xn + c/xn ) for approximating 
√

c. This scheme has
been known for over 2000 years. To understand why it works,
suppose that your initial guess (x0) at 

√
c is a little too small.

How would c/x0 compare to 
√

c? Explain why the average of
x0 and c/x0 would give a better approximation to 

√
c.

EXERCISES 3.2

1. In example 2.2, we mentioned that you might think of
using a linear approximation instead of Newton’s

method. Explain the relationship between a linear approxima-
tion to 

3
√

7 and a Newton’s method approximation to 
3
√

7.

(Hint: Compare the first step of Newton’s method to a linear
approximation.)

2. Explain why Newton’s method fails computationally if
f ′(x0) = 0. In terms of tangent lines intersecting the x-

axis, explain why having f ′(x0) = 0 is a problem.

3. Given the graph of y = f (x), draw in the tangent lines used in
Newton’s method to determine x1 and x2 after starting at
x0 = 2. Which of the zeros will Newton’s method converge to?

4. Repeat exercise 3 with x0 = −2 and x0 = 0.4.

5. What would happen to Newton’s method in exercise 3 if you
had a starting value of x0 = 0?

6. Consider the use of Newton’s method in exercise 3 with
x0 = 0.2 and x0 = 10. Obviously, x0 = 0.2 is much closer to a
zero of the function, but which initial guess would work better
in Newton’s method? Explain.

In exercises 7–10, use Newton’s method with the given x0 to
(a) compute x1 and x2 by hand and (b) use a computer or calcu-
lator to find the root to at least five-digit accuracy.

7. x3 + 3x2 − 1 = 0, x0 = 1

8. x3 + 4x2 − x − 1 = 0, x0 = −1

y

x
2�2

2



28. Show that Newton’s method applied to xn − c = 0 (where n
and c are positive constants) produces the iterative scheme
xn+1 = 1

n [(n − 1)xn + cx1−n
n ] for approximating n

√
c.

In exercises 29–36, use Newton’s method [state the function f (x)
you use] to estimate the given number. (Hint: See exercises 27–28.)

29.
√

11 30.
√

23 31.
3
√

11 32.
3
√

23

33.
4
√

24 34.
5
√

33 35.
4.4
√

24 36.
4.6
√

24

37. Suppose that a species reproduces as follows: with probability
p0, an organism has no offspring; with probability p1, an
organism has one offspring, with probability p2, an organism
has two offspring, and so on. The probability that the species
goes extinct is given by the smallest nonnegative solution of
the equation p0 + p1 x + p2 x2 + · · · = x (see Sigmund’s
Games of Life). Find the positive solutions of the equations
0.1 + 0.2x + 0.3x2 + 0.4x3 = x and 0.4 + 0.3x + 0.2x2 +
0.1x3 = x. Explain in terms of species going extinct why the
first equation has a smaller solution than the second.

38. For the extinction problem in exercise 37, show algebraically
that if p0 = 0, the probability of extinction is 0. Explain this re-
sult in terms of species reproduction. Show that a species with
p0 = 0.35, p1 = 0.4 and p2 = 0.25 (all other pn’s are 0) goes ex-
tinct with certainty (probability 1). This will be explored more
in the exercises for section 3.5.

39. The spruce budworm is an enemy of the balsam fir tree. In one
model of the interaction between these organisms, possible
long-term populations of the budworm are solutions of the
equation r(1 − x/k) = x/(1 + x2) for positive constants r and
k (see Murray’s Mathematical Biology). Find all positive
solutions of the equation with r = 0.5 and k = 7.

40. Repeat exercise 39 with r = 0.5 and k = 7.5. For a small change
in the environmental constant k (from 7 to 7.5), how did the
solution change from exercise 39 to exercise 40? The largest so-
lution corresponds to an “infestation” of the spruce budworm.

41. Newton’s theory of gravitation states that the weight of a person
at elevation x feet above sea level is W (x) = P R2/(R + x)2,

where P is the person’s weight at sea level and R is the radius
of the earth (approximately 20,900,000 feet). Find the linear
approximation of W(x) at x = 0. Use the linear approximation
to estimate the elevation required to reduce the weight of a
120-pound person by 1%.

42. One important aspect of Einstein’s theory of relativity is that
mass is not constant. For a person with mass m0 at rest, the mass
will equal m = m0/

√
1 − v2/c2 at velocity v (here, c is the

speed of light). Thinking of m as a function of v, find the linear
approximation of m(v) at v = 0. Use the linear approximation to
show that mass is essentially constant for small velocities.
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43. In the figure, a beam is clamped at its left end and simply sup-
ported at its right end. A force P (called an axial load) is
applied at the right end.

If enough force is applied, the beam will buckle. Obviously,
it is important for engineers to be able to compute this
buckling load. For certain types of beams, the buckling
load is the smallest positive solution of the equation
tan

√
x = √

x . The shape of the buckled beam is given by
y = √

L − √
Lx − √

L cos
√

Lx + sin 
√

Lx, where L is the
buckling load. Find L and the shape of the buckled beam.

44. The spectral radiancy S of an ideal radiator at constant temper-
ature can be thought of as function S( f ) of the radiant fre-
quency f. The function S( f ) attains its maximum when
3e−c f + c f − 3 = 0 for the constant c = 10−13 . Use Newton’s
method to approximate the solution.

In exercises 45–49, we explore the convergence of Newton’s
method for f (x) = x3 − 3x2 + 2x.

45. Show that the zeros of f are x = 0, x = 1 and x = 2.

46. Determine which of the three zeros Newton’s method iterates
converge to for (a) x0 = 0.1, (b) x0 = 1.1 and (c) x0 = 2.1.

47. Determine which of the three zeros Newton’s method iterates
converge to for (a) x0 = 0.54, (b) x0 = 0.55 and (c) x0 = 0.56.

48. The results of exercise 46 should make sense, but exercise 47 is
probably surprising. Compute slopes of f at each of the starting
points in exercises 46 and 47 and try to explain graphically why
the results in exercise 47 are confusing.

49. In this exercise, you will extend the work of exer-
cises 45–48. First, a definition: the basin of attraction

of a zero is the set of starting values x0 for which Newton’s
method iterates converge to the zero. As exercises 45–48 indi-
cate, the basin boundaries are more complicated than you
might expect. For example, you have seen that the interval
[0.54, 0.56] contains points in all three basins of attraction.
Show that the same is true of the interval [0.552, 0.553]. The
picture gets even more interesting when you use complex num-
bers. These are numbers of the form a + bi where i = √−1.

The remainder of the exercise requires a CAS or calculator that
is programmable and performs calculations with complex
numbers. First, try Newton’s method with starting point x0 =
1 + i. The formula is exactly the same! Use your computer to 

show that x1 = x0 − x3
0 − 3x2

0 + 2x0

3x2
0 − 6x0 + 2

= 1 + 1
2 i. Then verify 

P



that x2 = 1 + 1
7 i and x3 = 1 + 1

182 i. It certainly appears that
the iterates are converging to the zero x = 1. Now, for some
programming: set up a double loop with the parameter a
running from 0 to 2 in steps of 0.02 and b running from −1
to 1 in steps of 0.02. Within the double loop, set x0 = a + bi
and compute 10 Newton’s method iterates. If x10 is close
to 0, say |x10 − 0| < 0.1, then we can conjecture that the
iterates converge to 0. (Note: For complex numbers,
|a + bi | = √

a2 + b2.) Color the pixel at the point (a, b) black
if the iterates converge to 0 and white if not. You can change
the ranges of a and b and the step size to “zoom in” on interest-
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ing regions. The pictures to the left show the basin of attraction
(in black) for x = 1. In the first figure, we display the region
with −1.5 ≤ x ≤ 3.5. In the second figure, we have zoomed in
to the portion for 0.26 ≤ x ≤ 0.56. The third shows an even
tighter zoom: 0.5 ≤ x ≤ 0.555.

50. Another important question involving Newton’s method
is how fast it converges to a given zero. Intuitively,

we can distinguish between the rate of convergence for
f (x) = x2 − 1 (with x0 = 1.1) and that for g(x) = x2 −
2x + 1 (with x0 = 1.1). But how can we measure this? One
method is to take successive approximations xn−1 and xn and
compute the difference �n = xn − xn−1. To discover the im-
portance of this quantity, run Newton’s method with x0 = 1.5
and then compute the ratios �3/�2, �4/�3, �5/�4 and so on,
for each of the following functions 

F1(x) = (x − 1)(x + 2)3 = x4 + 5x3 + 6x2 − 4x − 8,

F2(x) = (x − 1)2(x + 2)2 = x4 + 2x3 − 3x2 − 4x + 4,

F3(x) = (x − 1)3(x + 2) = x4 − x3 − 3x2 + 5x − 2,

F4(x) = (x − 1)4 = x4 − 4x3 + 6x2 − 4x + 1.

In each case, conjecture a value for the limit r = lim
n→∞

�n+1

�n
. If 

the limit exists and is nonzero, we say that Newton’s method
converges linearly. How does r relate to your intuitive sense of
how fast the method converges? For f (x) = (x − 1)4, we say
that the zero x = 1 has multiplicity 4. For f (x) = (x − 1)3

(x + 2), x = 1 has multiplicity 3, and so on. How does r relate
to the multiplicity of the zero? Based on this analysis, why
did Newton’s method converge faster for f (x) = x2 − 1 than
for g(x) = x2 − 2x + 1? Finally, use Newton’s method to
compute the rate r and hypothesize the multiplicity of the zero
x = 0 for f (x) = x sin x and g(x) = x sin x2.

MAXIMUM AND MINIMUM VALUES

It seems that no matter where we turn today, we hear about the need to maximize this or min-
imize that. In order to remain competitive in a global economy, businesses need to minimize
waste and maximize the return on their investment. Managers for massively complex proj-
ects like the International Space Station must constantly readjust their programs to squeeze
the most out of dwindling resources. In the extremely competitive personal computer in-
dustry, companies must continually evaluate how low they can afford to set their prices and
still earn a profit adequate to survive. With this backdrop, it should be apparent that one of
the main thrusts of our increasingly mathematical society is to use mathematical methods to
maximize and minimize various quantities of interest. In this section, we investigate the no-
tion of maximum and minimum from a purely mathematical standpoint. In section 3.7, we
examine how to apply these notions to problems of an applied nature.

First, we give careful mathematical definitions of some familiar terms.

3.3


