
that x2 = 1 + 1
7 i and x3 = 1 + 1

182 i. It certainly appears that
the iterates are converging to the zero x = 1. Now, for some
programming: set up a double loop with the parameter a
running from 0 to 2 in steps of 0.02 and b running from −1
to 1 in steps of 0.02. Within the double loop, set x0 = a + bi
and compute 10 Newton’s method iterates. If x10 is close
to 0, say |x10 − 0| < 0.1, then we can conjecture that the
iterates converge to 0. (Note: For complex numbers,
|a + bi | = √

a2 + b2.) Color the pixel at the point (a, b) black
if the iterates converge to 0 and white if not. You can change
the ranges of a and b and the step size to “zoom in” on interest-
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ing regions. The pictures to the left show the basin of attraction
(in black) for x = 1. In the first figure, we display the region
with −1.5 ≤ x ≤ 3.5. In the second figure, we have zoomed in
to the portion for 0.26 ≤ x ≤ 0.56. The third shows an even
tighter zoom: 0.5 ≤ x ≤ 0.555.

50. Another important question involving Newton’s method
is how fast it converges to a given zero. Intuitively,

we can distinguish between the rate of convergence for
f (x) = x2 − 1 (with x0 = 1.1) and that for g(x) = x2 −
2x + 1 (with x0 = 1.1). But how can we measure this? One
method is to take successive approximations xn−1 and xn and
compute the difference �n = xn − xn−1. To discover the im-
portance of this quantity, run Newton’s method with x0 = 1.5
and then compute the ratios �3/�2, �4/�3, �5/�4 and so on,
for each of the following functions 

F1(x) = (x − 1)(x + 2)3 = x4 + 5x3 + 6x2 − 4x − 8,

F2(x) = (x − 1)2(x + 2)2 = x4 + 2x3 − 3x2 − 4x + 4,

F3(x) = (x − 1)3(x + 2) = x4 − x3 − 3x2 + 5x − 2,

F4(x) = (x − 1)4 = x4 − 4x3 + 6x2 − 4x + 1.

In each case, conjecture a value for the limit r = lim
n→∞

�n+1

�n
. If 

the limit exists and is nonzero, we say that Newton’s method
converges linearly. How does r relate to your intuitive sense of
how fast the method converges? For f (x) = (x − 1)4, we say
that the zero x = 1 has multiplicity 4. For f (x) = (x − 1)3

(x + 2), x = 1 has multiplicity 3, and so on. How does r relate
to the multiplicity of the zero? Based on this analysis, why
did Newton’s method converge faster for f (x) = x2 − 1 than
for g(x) = x2 − 2x + 1? Finally, use Newton’s method to
compute the rate r and hypothesize the multiplicity of the zero
x = 0 for f (x) = x sin x and g(x) = x sin x2.

MAXIMUM AND MINIMUM VALUES

It seems that no matter where we turn today, we hear about the need to maximize this or min-
imize that. In order to remain competitive in a global economy, businesses need to minimize
waste and maximize the return on their investment. Managers for massively complex proj-
ects like the International Space Station must constantly readjust their programs to squeeze
the most out of dwindling resources. In the extremely competitive personal computer in-
dustry, companies must continually evaluate how low they can afford to set their prices and
still earn a profit adequate to survive. With this backdrop, it should be apparent that one of
the main thrusts of our increasingly mathematical society is to use mathematical methods to
maximize and minimize various quantities of interest. In this section, we investigate the no-
tion of maximum and minimum from a purely mathematical standpoint. In section 3.7, we
examine how to apply these notions to problems of an applied nature.

First, we give careful mathematical definitions of some familiar terms.

3.3



The first question you might ask is whether every function has an absolute maximum
and an absolute minimum. The answer is no, as we can see from Figures 3.17a and 3.17b.

Definition 3.1

For a function f defined on a set S of real numbers and a number c ∈ S,
(i) f (c) is the absolute maximum of f on S if f (c) ≥ f(x) for all x ∈ S and

(ii) f (c) is the absolute minimum of f on S if f (c) ≤ f(x) for all x ∈ S.
An absolute maximum or an absolute minimum is referred to as an absolute

extremum. If a function has more than one extremum, we refer to these as extrema (the
plural form of extremum).
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�3 3

y
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f (0) � �9
(Absolute minimum)

No absolute
maximum

Figure 3.18

y = x2 − 9 on (−∞,∞).

Has no
absolute

maximum

x

y

f (c)

c

Absolute
minimum

Figure 3.17a

Has no
absolute

minimum

x

y

f (c)

c

Absolute
maximum

Figure 3.17b

(a) Locate any absolute extrema of f (x) = x2 − 9 on the interval (−∞,∞). (b) Locate
any absolute extrema of f (x) = x2 − 9 on the interval (−3, 3). (c) Locate any absolute
extrema of f (x) = x2 − 9 on the interval [−3, 3].

Solution (a) From the graph in Figure 3.18, notice that f has an absolute minimum
value of f (0) = −9, but has no absolute maximum value.

(b) From the graph in Figure 3.19a, we see that f has an absolute minimum value of
f (0) = −9, but still has no absolute maximum value. Your initial reaction might be to
say that f has an absolute maximum of 0, but f (x) 	= 0 for any x ∈ (−3, 3), since this
is an open interval and hence, does not include the endpoints −3 and 3.

y = x2 − 9 [−3, 3].y = x2 − 9 (−3, 3).

Figure 3.19bFigure 3.19a

y

�3 3

f (0) � �9
(Absolute minimum)

Absolute maximum
f (�3) � f (3) � 0

x

y

�3 3

f (0) � �9
(Absolute minimum)

No absolute 
maximum

x

Absolute Maximum and Minimum ValuesExample 3.1



(c) In this case, the endpoints 3 and −3 are in the interval [−3, 3]. Here, f assumes
its absolute maximum at two points: f (3) = f (−3) = 0 (see Figure 3.19b).

�

From example 3.1, we see that even nice, continuous functions may fail to have ab-
solute extrema, depending on the interval on which we’re looking. In example 3.1, the
function failed to have an absolute maximum, except on the closed, bounded interval,
[−3, 3]. This provides some clues, but the question remains as to when a function is guar-
anteed to have an absolute maximum and an absolute minimum on a given interval. The
following example provides one more piece of the puzzle.

Locate any absolute extrema of f (x) = 1/x, on the interval [−3, 3].

Solution From the graph in Figure 3.20, f clearly fails to have either an absolute
maximum or an absolute minimum on [−3, 3]. The following table of values for f (x)

for x close to 0 suggests the same conclusion.

A Function with No Absolute Maximum or MinimumExample 3.2
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1 1 −1 −1

0.1 10 −0.1 −10

0.01 100 −0.01 −100

0.001 1,000 −0.001 −1,000

0.0001 10,000 −0.0001 −10,000

0.00001 100,000 −0.00001 −100,000

0.000001 1,000,000 −0.000001 −1,000,000

x 1/x x 1/x

The most obvious difference between the functions in examples 3.1 and 3.2 is that
f (x) = 1/x is discontinuous at a point in the interval [−3, 3]. We offer the following
theorem without proof.

While you do not need to have a continuous function or a closed interval to have an ab-
solute extremum, the theorem says that continuous functions are guaranteed to have an
absolute maximum and an absolute minimum on a closed, bounded interval.

In the following example, we return to the function from example 3.2, but look on a
different interval.

Theorem 3.1 (Extreme Value Theorem)

A continuous function f defined on a closed, bounded interval [a, b] attains both an ab-
solute maximum and an absolute minimum on that interval.

y

x
3

�3

2

Figure 3.20

y = 1/x .



Find the absolute extrema of f (x) = 1/x on the interval [1, 3].

Solution Notice that on the interval [1, 3], f is continuous. Consequently, the
Extreme Value Theorem guarantees that f has both an absolute maximum and an ab-
solute minimum on [1, 3]. Judging from the graph in Figure 3.21, it appears that f (x)

reaches its maximum at x = 1 and its minimum at x = 3.

�

Our objective is to determine how to locate the absolute extrema of a given function.
Before we do this, we need to consider one additional type of extremum.

Local maxima and minima (the plural forms of maximum and minimum, respectively)
are sometimes referred to as relative maxima and minima, respectively. In Figure 3.22, we
see a function with several local extrema.

You should notice from Figure 3.22 that each local extremum seems to occur either at
a point where the tangent line is horizontal [i.e., f ′(x) = 0], at a point where the tangent
line is vertical [where f ′(x) is undefined] or at a corner [again, where f ′(x) is undefined].
We can see this behavior quite clearly in the following two examples.

Local extrema.

Figure 3.22

x

y

db

ca

Local minimum
[ f �(a) � 0]

Local minimum
[ f �(c) is undefined]

Local maximum
[ f �(b) � 0]

Local maximum
[ f �(d) is undefined]

Definition 3.2

(i) f (c) is a local maximum of f if f (c) ≥ f (x) for all x in some open interval
containing c.

(ii) f (c) is a local minimum of f if f (c) ≤ f (x) for all x in some open interval
containing c.

In either case, we call f (c) a local extremum of f. 

Finding Absolute Extrema of a Continuous FunctionExample 3.3
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x

y

1

31

Figure 3.21

y = 1/x on [1, 3].



Locate any local extrema for f (x) = 9 − x2 and describe the behavior of the derivative
at the local extremum.

Solution We can see from Figure 3.23 that there is a local maximum at x = 0.

Further, note that f ′(x) = −2x and so, f ′(0) = 0. Note that this says that the tangent
line to y = f (x) at x = 0 is horizontal, as indicated in Figure 3.23.

�

Locate any local extrema for f (x) = |x | and describe the behavior of the derivative at
the local extremum.

Solution We can see from Figure 3.24 that there is a local minimum at x = 0. As
we have noted in Chapter 2, the graph has a corner at x = 0 and hence, f ′(0) is unde-
fined. [Recall that all the tangent lines to the graph for x < 0 have slope −1, while all
the tangent lines for x > 0 have slope 1. Since the limit of the slopes of secant lines
from the right and from the left are not the same, we know that f ′(0) does not exist.]

�

The graphs shown in Figures 3.22–3.24 are not unusual. Here is a small challenge:
Spend a little time now drawing graphs of functions with local extrema. It should not
take long to convince yourself that local extrema occur only at points where the deriva-
tive is either zero or undefined. Because of this, we give these points a special name.

It turns out that our earlier observation regarding the location of extrema is correct.
That is, local extrema occur only at points where the derivative is zero or undefined. We
state this formally in the following theorem.

Suppose that f is differentiable at x = c. (If not, c is a critical number of f and we are
done.) Suppose further that f ′(c) 	= 0. Then, either f ′(c) > 0 or f ′(c) < 0.

If f ′(c) > 0, we have by the definition of derivative that

f ′(c) = lim
h→0

f (c + h) − f (c)

h
> 0.

Proof

Theorem 3.2 (Fermat’s Theorem) 

Suppose that f (c) is a local extremum (local maximum or local minimum). Then c must
be a critical number of f.

Definition 3.3

A number c in the domain of a function f is called a critical number of f if f ′(c) = 0
or f ′(c) is undefined.

A Function with an Undefined Derivative 
at a Local MinimumExample 3.5

A Function with a Zero Derivative at a Local MaximumExample 3.4
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H I S T O R I C A L N O T E S

Pierre de Fermat (1601–1665)
A French mathematician who
discovered many important results,
including the theorem named for
him. Fermat was a lawyer and
member of the Toulouse supreme
court, with mathematics as a hobby.
The “Prince of Amateurs” left an
unusual legacy by writing in the
margin of a book that he had
discovered a wonderful proof of a
clever result, but that the margin of
the book was too small to hold the
proof. Fermat’s Last Theorem
confounded many of the world’s
best mathematicians for more than
300 years before being proved by
Andrew Wiles in 1995.
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2�2

y

Figure 3.23

y = 9 − x2 and the tangent line 
at x = 0.

y

x

3

2

Figure 3.24
y = |x | .



So, for all h sufficiently small,

f (c + h) − f (c)

h
> 0. (3.1)

For h > 0, (3.1) says that

f (c + h) − f (c) > 0

and so,

f (c + h) > f (c).

Thus, f (c) is not a local maximum.
For h < 0, (3.1) says that 

f (c + h) − f (c) < 0

and so,

f (c + h) < f (c).

Thus, f (c) is not a local minimum.
Since we had assumed that f (c) was a local extremum, this is a contradiction.

Consequently, f ′(c) ≤ 0.

Similarly, if f ′(c) < 0, we obtain the same contradiction. This is left as an exercise.
The only remaining possibility is to have f ′(c) = 0 and this proves the theorem.

We can use Fermat’s Theorem and calculator- or computer-generated graphs to find
local extrema, as in the following two examples.

Find the critical numbers and local extrema of f (x) = 2x3 − 3x2 − 12x + 5.

Solution Here,

f ′(x) = 6x2 − 6x − 12 = 6(x2 − x − 2)

= 6(x − 2)(x + 1).

Thus, f has two critical numbers, x = −1 and x = 2. Notice from the graph in
Figure 3.25 that these correspond to the locations of a local maximum and a local
minimum, respectively.

�

Find the critical numbers and local extrema of f (x) = (3x + 1)2/3.

Solution Here, we have 

f ′(x) = 2

3
(3x + 1)−1/3(3) = 2

(3x + 1)1/3
.

Of course, f ′(x) 	= 0 for all x, but f ′(x) is undefined at x = − 1
3 . Be sure to note that

− 1
3 is in the domain of f. Thus, x = − 1

3 is the only critical number of f. From the graph
in Figure 3.26, we see that this corresponds to the location of a local minimum (also the

An Extremum at a Point where the 
Derivative Is UndefinedExample 3.7

Finding Local Extrema of a PolynomialExample 3.6
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Figure 3.25

y = 2x3 − 3x2 − 12x + 5.

y

x
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2�2

Figure 3.26

y = (3x + 1)2/3.



absolute minimum). You should try to use your graphing utility to produce a graph of
y = f (x). If you get only half of the graph displayed in Figure 3.26, you have discov-
ered one of the dangers in relying too heavily on technology. The algorithms used by
most calculators and many computers will return a complex number (or an error) when
asked to compute certain fractional powers of negative numbers. This annoying short-
coming presents only occasional difficulties. We mention this here only to make you
aware that technology has limitations.

�

Find the critical numbers and local extrema of f (x) = x3.

Solution It should be clear from Figure 3.27 that f has no local extrema. However,
f ′(x) = 3x2 = 0 for x = 0 (the only critical number of f ). In this case, f has a hori-
zontal tangent line at x = 0, but does not have a local extremum there (or anywhere
else).

�

Find the critical numbers and local extrema of f (x) = x1/3.

Solution As in example 3.8, f has no local extrema (see Figure 3.28). Here,
f ′(x) = 1

3 x−2/3 and so, f has a critical number at x = 0 (in this case the derivative is
undefined at x = 0). However, f does not have a local extremum at x = 0 (or anywhere
else).

�

You must be certain to check that a given value is in the domain of the function before
declaring it a critical number, as in the following example.

Find all the critical numbers of f (x) = 2x2

x + 2
.

Solution You should note that the domain of f consists of all real numbers other
than x = −2. Here, we have

f ′(x) = 4x(x + 2) − 2x2(1)

(x + 2)2

= 2x(x + 4)

(x + 2)2
.

From the quotient rule.

Notice that f ′ (x) = 0 for x = 0, −4 and f ′ (x) is undefined for x = −2. However, −2 is
not in the domain of f and consequently, the only critical numbers are x = 0 and x = −4.

�

Finding Critical Numbers of a Rational FunctionExample 3.10

A Vertical Tangent at a Point That Is Not 
a Local ExtremumExample 3.9

A Horizontal Tangent at a Point That Is Not
a Local ExtremumExample 3.8
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Fermat’s Theorem says that local
extrema can only occur at critical
numbers. This does not say that there
is a local extremum at every critical
number. In fact, this is false, as we
illustrate in examples 3.8 and 3.9.

Remark 3.1
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y = x1/3.
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Figure 3.27

y = x3.



So far in this section, we have been dancing all around the question of how to locate
extrema. We have said that local extrema occur only at critical numbers and that continu-
ous functions must have an absolute maximum and an absolute minimum on a closed,
bounded interval. But, so far, we haven’t really been able to say how to find these extrema.
The following theorem is particularly useful.

First, recall that by the Extreme Value Theorem, f will attain its maximum and minimum
values on [a, b], since f is continuous. Let f (c) be an absolute extremum. If c is not an
endpoint (i.e., c 	= a and c 	= b), then c must be in the open interval (a, b). Thus, f (c)
must be a local extremum, also. Finally, by Fermat’s Theorem, c must be a critical num-
ber, since local extrema occur only at critical numbers.

Notice that Theorem 3.3 says that in order to find the absolute extrema of a continuous function on a
closed, bounded interval, we need only compare the values of the function at the endpoints and at the
critical numbers. The largest of these will be the absolute maximum and the smallest will be the
absolute minimum.

We illustrate Theorem 3.3 for the case of a polynomial function in the following
example.

Find the absolute extrema of f (x) = 2x3 − 3x2 − 12x + 5 on the interval [−2, 4].

Solution From the graph in Figure 3.29, the maximum appears to be at the
endpoint x = 4, while the minimum appears to be at a local minimum near x = 2. In
example 3.6, we found that the critical numbers of f are x = −1 and x = 2. Further, both
of these are in the interval [−2, 4]. So, we compare the values at the endpoints:

f (−2) = 1 and f (4) = 37,

and the values at the critical numbers:

f (−1) = 12 and f (2) = −15.

Theorem 3.3 says that the absolute extrema must be among these four values. Thus,
f (4) = 37 is the absolute maximum and f (2) = −15 is the absolute minimum. You
should take care to note that these values are consistent with what we saw in the graph in
Figure 3.29.

�

Finding Absolute Extrema on a Closed IntervalExample 3.11

Remark 3.3

Proof

Theorem 3.3

Suppose that f is continuous on the closed interval [a, b]. Then, the absolute extrema of
f must occur at an endpoint (a or b) or at a critical number.
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When we use the terms maximum,
minimum or extremum without spec-
ifying absolute or local, we will al-
ways be referring to absolute extrema.

Remark 3.2
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Figure 3.29

y = 2x3 − 3x2 − 12x + 5.



Of course, most real problems of interest are unlikely to result in derivatives that
are quadratic polynomials with integer zeros. Consider the following somewhat less user-
friendly example.

Find the absolute extrema of f (x) = 4x5/4 − 8x1/4 on the interval [0, 4].

Solution First, we draw a graph of the function to get an idea of where the extrema
are located (see Figure 3.30). From the graph, it appears that the maximum occurs at the
endpoint x = 4 and the minimum near x = 1

2 . Next, observe that

f ′(x) = 5x1/4 − 2x−3/4 = 5x − 2

x3/4
.

Thus, the critical numbers are x = 2
5 [since f ′( 2

5 ) = 0] and x = 0 (since f ′ is undefined
at x = 0 and 0 is in the domain of f ). We now need only compare

f (0) = 0, f (4) ≈ 11.3137 and f
(

2
5

) ≈ −5.0897.

So, the absolute maximum is f (4) ≈ 11.3137 and the absolute minimum is f ( 2
5 ) ≈

−5.0897, which is consistent with what we expected from Figure 3.30.

�

In practice, the critical numbers are not always as easy to find as they were in exam-
ples 3.11 and 3.12. In the following example, it is not even known how many critical num-
bers there are. We can, however, estimate the number and locations of these from a careful
analysis of computer-generated graphs.

Find the absolute extrema of f (x) = x3 − 5x + 3 sin x2 on the interval [−2, 2.5].

Solution Once again, we first draw a graph to get an idea of where the extrema
will be located (see Figure 3.31). From the graph, we can see that the maximum seems
to occur near x = −1, while the minimum seems to occur near x = 2. Next, we compute 

f ′(x) = 3x2 − 5 + 6x cos x2.

Unlike examples 3.11 and 3.12, there is no algebra we can use to find the zeros of f ′. Our
only alternative is to find the zeros approximately. You can do this by using Newton’s
method to solve f ′(x) = 0. (You can also use any other rootfinding method built into
your calculator or computer.) First, we’ll need adequate initial guesses. We obtain these
from the graph of y = f ′ (x) found in Figure 3.32. From the graph, it appears that there
are four zeros of f ′ (x) on the interval in question, located near x = −1.3, 0.7, 1.2 and
2.0. Further, referring back to Figure 3.31, these four zeros correspond with the four
local extrema seen in the graph of y = f (x). We now apply Newton’s method to solve
f ′ (x) = 0, using the preceding four values as our initial guesses. This leads us to four
approximate critical numbers of f on the interval [−2, 2.5]. We have

a ≈ −1.26410884789, b ≈ 0.674471354085, 

c ≈ 1.2266828947 and d ≈ 2.01830371473.

Finding Absolute Extrema ApproximatelyExample 3.13

Finding Extrema for a Function 
with Fractional ExponentsExample 3.12
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y = 4x5/4 − 8x1/4.



While not exact, these are very accurate approximations of the critical numbers. We
now need only compare the values of f at the endpoints and the approximate critical
numbers:

f (a) ≈ 7.3, f (b) ≈ −1.7, f (c) ≈ −1.3

f (d) ≈ −4.3, f (−2) ≈ −0.3 and f (2.5) ≈ 3.0.

Thus, the absolute maximum is approximately f (−1.26410884789) ≈ 7.3 and the
absolute minimum is approximately f (2.01830371473) ≈ −4.3.

It is important (especially in light of how much of our work here was approximate
and graphical) to verify that the approximate extrema correspond with what we expect
from the graph of y = f (x). Since these correspond closely, we have great confidence in
their accuracy.

�

We have now seen how to locate the absolute extrema of a continuous function on a
closed interval. In section 3.4, we see how to find local extrema.
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EXERCISES 3.3

In exercises 5–32, find all critical numbers and determine whether
each represents a local maximum, local minimum or neither.

5. f (x) = x2 + 5x − 1 6. f (x) = −x2 + 4x + 2

7. f (x) = x3 − 3x + 1 8. f (x) = x3 + 3x + 1

9. f (x) = x3 − 3x2 + 3x 10. f (x) = x3 − 3x2 + 6x

11. f (x) = x4 − 3x3 + 2 12. f (x) = x4 + 6x2 − 2

13. f (x) = x3/4 − 4x1/4 14. f (x) = (x2/5 − 3x1/5)2

15. f (x) = x3 − 2x2 − 4x

16. f (x) = x5 − 20x2 + 1

17. f (x) = sin x cos x, [0, 2π]

18. f (x) = sin x + cos x, [0, 2π]

19. f (x) = x + 1

x − 1
20. f (x) = x2 − x + 4

x − 1

21. f (x) = x

x2 + 1
22. f (x) = 3x

x2 − 1

1. Using one or more graphs, explain why the Extreme
Value Theorem is true. Is the conclusion true if we drop

the hypothesis that f (x) is a continuous function? Is the conclu-
sion true if we drop the hypothesis that the interval is closed? 

2. Using one or more graphs, argue that Fermat’s Theorem
is true. Discuss how Fermat’s Theorem is used. Restate

the theorem in your own words to make its use more clear.

3. Suppose that f (t) represents your elevation after t hours
on a mountain hike. If you stop to rest, explain why

f ′ (t) = 0. Discuss the circumstances under which you would be
at a local maximum, local minimum or neither.

4. Mathematically, an if/then statement is usually strictly
one-directional. When we say “If A then B” it is gener-

ally not the case that “If B then A” is also true: when both are
true, we say “A if and only if B” which is abbreviated to “A iff
B.” Unfortunately, common English usage is not always this
precise. This occasionally causes a problem interpreting a
mathematical theorem. To get this straight, consider the state-
ment, “If you wrote a best-selling book, then you made a lot of
money.” Is this true? How does this differ from its converse,
“If you made a lot of money, then you wrote a best-selling
book.” Is the converse always true? Sometimes true? Apply
this logic to both the Extreme Value Theorem and Fermat’s
Theorem: state the converse and decide if it is sometimes true
or always true.



23. f (x) = 1
2 (ex + e−x )

24. f (x) = 1
2 (ex − e−x )

25. f (x) = x4/3 + 4x1/3 + 4x−2/3

26. f (x) = x7/3 − 28x1/3

27. f (x) = 2x
√

x + 1

28. f (x) = x/
√

x2 + 1

29. f (x) = e−x 2

30. f (x) = xe−x

31. f (x) = sin x2, [0, π]

32. f (x) = sin2 x, [0, 2π]

In exercises 33–42, find the absolute extrema of the given
function on the indicated interval.

33. f (x) = x3 − 3x + 1, [0, 2]

34. f (x) = x3 − 3x + 1, [−3, 2]

35. f (x) = x4 − 8x2 + 2, [−3, 1]

36. f (x) = x4 − 8x2 + 2, [−1, 3]

37. f (x) = x2/3, [−4,−2]

38. f (x) = x2/3, [−1, 3]

39. f (x) = sin x + cos x, [0, 2π]

40. f (x) = sin x + cos x, [π/2, π]

41. f (x) = x sin x + 3, [0, 2π]

42. f (x) = x2 + ex , [−2, 2]

In exercises 43–46, numerically estimate the absolute extrema of
the given function on the indicated interval.

43. f (x) = x4 − 3x2 + 2x + 1 on (a) [−1, 1] and (b) [−3, 2]

44. f (x) = x6 − 3x4 − 2x + 1 on (a) [−1, 1] and (b) [−2, 2]

45. f (x) = x2 − 3x cos x on (a) [−2, 1] and (b) [−5, 0]

46. f (x) = xecos 2x on (a) [−2, 2] and (b) [2, 5]

47. Repeat exercises 33–38, except instead of finding extrema on
the closed interval, find the extrema on the open interval, if
they exist.
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48. Briefly outline a procedure for finding extrema on an open in-
terval (a, b), a procedure for the half-open interval (a, b] and a
procedure for the half-open interval [a, b).

49. Sketch a graph of a function f (x) such that the absolute maxi-
mum of f (x) on the interval [−2, 2] equals 3 and the absolute
minimum does not exist.

50. Sketch a graph of a continuous function f (x) such that the ab-
solute maximum of f (x) on the interval (−2, 2) does not exist
and the absolute minimum equals 2.

51. Sketch a graph of a continuous function f (x) such that the
absolute maximum of f (x) on the interval (−2, 2) equals 4 and
the absolute minimum equals 2.

52. Sketch a graph of a function f (x) such that the absolute maxi-
mum of f (x) on the interval [−2, 2] does not exist and the
absolute minimum does not exist.

53. Sketch a graph of f (x) = x2

x2 + 1
for x > 0 and determine

where the graph is steepest (that is, find where the slope is a
maximum).

54. Sketch a graph of f (x) = e−x 2
and determine where the graph

is steepest. (Note: This is an important problem in probability
theory.)

55. Sketch a graph showing that y = f (x) = x2 + 1 and y =
g (x) = ln x do not intersect. Find x to minimize f (x) − g(x).
At this value of x, show that the tangent lines to y = f (x) and
y = g (x) are parallel.

56. Explain graphically why it makes sense that the tangent lines in
exercise 55 are parallel, given that at this point the vertical dis-
tance between the graphs is smallest.

57. Give an example showing that the following statement is false
(not always true): between any two local minima of f (x) there
is a local maximum.

58. Is the statement in exercise 57 true if f (x) is continuous?

59. A section of roller coaster is in the shape of y = x5 − 4x3 −
x + 10, where x is between −2 and 2. Find all relative extrema
and explain what portions of the roller coaster they represent.
Find the location of the steepest part of the roller coaster.

60. Suppose a large computer file is sent over the Internet. If the
probability that it reaches its destination without any errors is x,
then the probability that an error is made is 1 − x. The field of
information theory studies such situations. An important
quantity is entropy (a measure of unpredictability), defined by
H = −x ln x − (1 − x) ln(1 − x), for 0 < x < 1. Find the
value of x that maximizes this quantity. Explain why this value
makes sense as the probability that maximizes entropy.



61. Researchers in a number of fields (including population biol-
ogy, economics and the study of animal tumors) make use of
the Gompertz growth curve, W (t) = ae−be−t

. As t → ∞,
show that W (t) → a and W ′(t) → 0. Find the maximum
growth rate.

62. In this exercise, we will explore the family of functions
f (x) = x3 + cx + 1, where c is a constant. How many

and what types of relative extrema are there? (Your answer will
depend on the value of c.) Assuming that this family is indica-
tive of all cubic functions, list all types of cubic functions.
Without looking at specific examples, try to list all types of
fourth-order polynomials, sketching a graph of each.

63. Explore the graphs of e−x , xe−x , x2e−x and x3e−x.

Find all local extrema and determine the behavior as
x → ∞. You can think of the graph of xn e−x as showing
the results of a tug-of-war: xn → ∞ as x → ∞ but e−x → 0
as x → ∞. Describe the graph of xn e−x in terms of this
tug-of-war.

64. Johannes Kepler (1571–1630) is best known as an as-
tronomer, especially for his three laws of planetary

motion. However, his discoveries were primarily due to his
brilliance as a mathematician. While serving in Austrian
Emperor Matthew I’s court, Kepler observed the ability of
Austrian vintners to quickly and mysteriously compute the
capacities of a variety of wine casks. Each cask (barrel) had a
hole in the middle of its side (see Figure a). The vintner would
insert a rod in the hole until it hit the far corner and then
announce the volume. Kepler first analyzed the problem for a
cylindrical barrel (see Figure b). The volume of a cylinder is
V = πr2h . In Figure b, r = y and h = 2x so V = 2πy2 x .
Call the rod measurement z. By the Pythagorean Theorem,

Section 3.4 Increasing and Decreasing Functions 269

x2 + (2y)2 = z2. Kepler’s mystery was how to compute V given
only z. The key observation made by Kepler was that Austrian
wine casks were made with the same height-to-diameter ratio
(for us, x/y). Let t = x/y and show that z2/y2 = t2 + 4. Use
this to replace y2 in the volume formula. Then replace x with √

z2 − 4y2 . Show that V = 2πz3t
(4 + t2)3/2

. In this formula, t is

a constant so the vintner could measure z and quickly estimate
the volume. We haven’t told you yet what t equals. Kepler as-
sumed that the vintners would have made a smart choice for
this ratio. Find the value of t that maximizes the volume for a
given z. This is, in fact, the ratio used in the construction of
Austrian wine casks!

Figure b
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INCREASING AND DECREASING FUNCTIONS

One of the questions from section 3.3 that we have yet to answer is how to determine where
a function has a local maximum or local minimum. We have already determined that local
extrema occur only at critical numbers. Unfortunately, not all critical numbers correspond
to local extrema. In this section, we develop a means of deciding which critical numbers
correspond to local extrema. At the same time, we’ll learn more about the connection be-
tween the derivative and graphing. We begin with a very simple notion.

We are all familiar with the terms increasing and decreasing. If your employer
informs you that your salary will be increasing steadily over the term of your employment,
you have in mind that as time goes on, your salary will rise. If you plotted your salary
against time, the graph might look something like Figure 3.33. If you take out a loan to pur-
chase a car or a home or to pay for your college education, once you start paying back the 

3.4

Time

Salary

Figure 3.33

Increasing salary.


