
61. Researchers in a number of fields (including population biol-
ogy, economics and the study of animal tumors) make use of
the Gompertz growth curve, W (t) = ae−be−t

. As t → ∞,
show that W (t) → a and W ′(t) → 0. Find the maximum
growth rate.

62. In this exercise, we will explore the family of functions
f (x) = x3 + cx + 1, where c is a constant. How many

and what types of relative extrema are there? (Your answer will
depend on the value of c.) Assuming that this family is indica-
tive of all cubic functions, list all types of cubic functions.
Without looking at specific examples, try to list all types of
fourth-order polynomials, sketching a graph of each.

63. Explore the graphs of e−x , xe−x , x2e−x and x3e−x.

Find all local extrema and determine the behavior as
x → ∞. You can think of the graph of xn e−x as showing
the results of a tug-of-war: xn → ∞ as x → ∞ but e−x → 0
as x → ∞. Describe the graph of xn e−x in terms of this
tug-of-war.

64. Johannes Kepler (1571–1630) is best known as an as-
tronomer, especially for his three laws of planetary

motion. However, his discoveries were primarily due to his
brilliance as a mathematician. While serving in Austrian
Emperor Matthew I’s court, Kepler observed the ability of
Austrian vintners to quickly and mysteriously compute the
capacities of a variety of wine casks. Each cask (barrel) had a
hole in the middle of its side (see Figure a). The vintner would
insert a rod in the hole until it hit the far corner and then
announce the volume. Kepler first analyzed the problem for a
cylindrical barrel (see Figure b). The volume of a cylinder is
V = πr2h . In Figure b, r = y and h = 2x so V = 2πy2 x .
Call the rod measurement z. By the Pythagorean Theorem,
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x2 + (2y)2 = z2. Kepler’s mystery was how to compute V given
only z. The key observation made by Kepler was that Austrian
wine casks were made with the same height-to-diameter ratio
(for us, x/y). Let t = x/y and show that z2/y2 = t2 + 4. Use
this to replace y2 in the volume formula. Then replace x with √

z2 − 4y2 . Show that V = 2πz3t
(4 + t2)3/2

. In this formula, t is

a constant so the vintner could measure z and quickly estimate
the volume. We haven’t told you yet what t equals. Kepler as-
sumed that the vintners would have made a smart choice for
this ratio. Find the value of t that maximizes the volume for a
given z. This is, in fact, the ratio used in the construction of
Austrian wine casks!

Figure b

z 2y

2x

Figure a

z

INCREASING AND DECREASING FUNCTIONS

One of the questions from section 3.3 that we have yet to answer is how to determine where
a function has a local maximum or local minimum. We have already determined that local
extrema occur only at critical numbers. Unfortunately, not all critical numbers correspond
to local extrema. In this section, we develop a means of deciding which critical numbers
correspond to local extrema. At the same time, we’ll learn more about the connection be-
tween the derivative and graphing. We begin with a very simple notion.

We are all familiar with the terms increasing and decreasing. If your employer
informs you that your salary will be increasing steadily over the term of your employment,
you have in mind that as time goes on, your salary will rise. If you plotted your salary
against time, the graph might look something like Figure 3.33. If you take out a loan to pur-
chase a car or a home or to pay for your college education, once you start paying back the 

3.4

Time

Salary

Figure 3.33

Increasing salary.



loan, your indebtedness will decrease over time. If you plotted your debt against time, the
graph might look something like Figure 3.34.

We now carefully define these notions. Notice that the following definition is merely a
formal statement of something you already understand.

Why do we bother with such an obvious definition? Of course, anyone can look at
a graph of a function and immediately see where that function is increasing and decreas-
ing. The real challenge is to determine where a function is increasing and decreasing, given
only a mathematical formula for the function. For example, can you determine where
f (x) = x2 sin x is increasing and decreasing, without looking at a graph? Even with a graph,
can you determine where this happens precisely? Look carefully at Figure 3.35 to see if you
can notice what happens at every point at which the function is increasing or decreasing.

Definition 4.1

A function f is (strictly) increasing on an interval I if for every x1, x2 ∈ I with x1 < x2,

f (x1) < f (x2) [i.e., f (x) gets larger as x gets larger].
A function f is (strictly) decreasing on the interval I if for every x1, x2 ∈ I with

x1 < x2, f (x1) > f (x2) [i.e., f (x) gets smaller as x gets larger].
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Time

Debt

Figure 3.34

Decreasing debt.

f increasing
(tangent lines have

positive slope)

f decreasing
(tangent lines have

negative slope)

x

y

y � f (x)

Figure 3.35

Increasing and decreasing.

You should observe that on intervals where f is increasing, the tangent lines all have
positive slope, while on intervals where f is decreasing, the tangent lines all have negative
slope. Of course, we already know that the slope of the tangent line at a point is given by
the value of the derivative at that point. So, whether a function is increasing or decreasing
on an interval seems to be connected to the sign of its derivative on that interval. This con-
jecture, although it’s based only on a single picture, sounds like a theorem and it is.

Theorem 4.1

Suppose that f is differentiable on an interval I.
(i) If f ′(x) > 0 for all x ∈ I , then f is increasing on I.

(ii) If f ′(x) < 0 for all x ∈ I , then f is decreasing on I.
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Figure 3.36

y = 2x3 + 9x2 − 24x − 10.

(i) Pick any two points x1, x2 ∈ I, with x1 < x2. Applying the Mean Value Theorem
(Theorem 9.4 in section 2.9) to f on the interval (x1, x2), we get

f (x2) − f (x1)

x2 − x1
= f ′(c), (4.1)

for some number c ∈ (x1, x2). (Why can we apply the Mean Value Theorem here?) By
hypothesis, f ′(c) > 0 and since x1 < x2 (so that x2 − x1 > 0), we have from (4.1) that

0 < f (x2) − f (x1)

or
f (x1) < f (x2). (4.2)

Since (4.2) holds for all x1 < x2, f is increasing on I.
The proof of (ii) is nearly identical and is left as an exercise.

What You See May Not Be What You Get
One aim in the next few sections is to learn how to draw fairly representative graphs of
functions (i.e., graphs that display all of the significant features of a function: where it is
increasing or decreasing, any extrema, asymptotes and two features we’ll introduce in
section 3.5: concavity and inflection points). You might think that there is little to be con-
cerned about, given the ease with which you can draw graphs by machine, but there is a
significant issue here. When we draw a graph, we are drawing in a particular viewing
window (i.e., a particular range of x- and y-values). When we use a computer or calcula-
tor to draw graphs, the window is often chosen by the machine. So, when is the window
properly adjusted to show enough of the graph to be representative of the behavior of the
function? We need to know when significant features are hidden outside of a given win-
dow and how to determine the precise locations of features that we can see in a given win-
dow. As we’ll see, the only way we can resolve these questions is with a healthy dose of
calculus.

Draw a graph of f (x) = 2x3 + 9x2 − 24x − 10 showing all local extrema.

Solution The most popular graphing calculators use the window defined by
−10 ≤ x ≤ 10 and −10 ≤ y ≤ 10 as their default. Using this window, the graph of y =
f (x) looks like that displayed in Figure 3.36. The three segments seen in Figure 3.36 are
not particularly revealing. Instead of blindly manipulating the window in the hope that
a reasonable graph will magically appear, we stop briefly to determine where the func-
tion is increasing and decreasing. First, we need the derivative

f ′(x) = 6x2 + 18x − 24 = 6(x2 + 3x − 4)

= 6(x − 1)(x + 4).

Note that the critical numbers are 1 and −4, so these are the only candidates for local
extrema. We can see where the two factors and consequently the derivative are positive

Drawing a GraphExample 4.1

Proof
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and negative from the number lines displayed in the margin. From this, note that 

f ′(x) > 0 on (−∞,−4) ∪ (1,∞) f increasing.

and

f ′(x) < 0 on (−4, 1). f decreasing.

So that you can conveniently see this information at a glance, we have placed arrows in-
dicating where the function is increasing and decreasing beneath the last number line. In
particular, notice that this suggests that we are not seeing enough of the graph in the
window in Figure 3.36. In Figure 3.37a, we redraw the graph in the window defined by
−8 ≤ x ≤ 4 and −25 ≤ y ≤ 105. Here, we have selected the y-range so that the critical
points (−4, 102) and (1, −23) (and every point in between) are displayed. Since we
know that f is increasing on all of (−∞,−4), we know that the function is still increas-
ing to the left of the portion displayed in Figure 3.37a. Likewise, since we know that f
is increasing on all of (1, ∞), we know that the function continues to increase to the
right of the displayed portion. The graph in Figure 3.37a conveys all of this significant
behavior of the function. In Figure 3.37b, we have plotted both y = f (x) (shown in
blue) and y = f ′(x) (shown in red). Notice the connection between the two graphs. When
f ′(x) > 0, f is increasing; when f ′(x) < 0, f is decreasing and also notice what hap-
pens to f ′(x) at the local extrema of f. (We’ll say more about this shortly.)

�

You may be tempted to think that you can dispense with using any calculus to draw a
graph. After all, it’s easy to get lured into thinking that your graphing calculator or com-
puter can draw a much better graph than you can in only a fraction of the time and with vir-
tually no effort. To some extent, this is true. You can draw graphs by machine and with a
little fiddling with the graphing window, get a reasonable looking graph. Unfortunately,
this frequently isn’t enough. For instance, while it’s clear that the graph in Figure 3.36 is
incomplete, the initial graph in the following example has a familiar shape and may look
reasonable, but it is incorrect. The calculus tells you what features you should expect to
see in a graph. Without it, you’re simply fooling around and hoping you get something
reasonable.

Graph f (x) = 3x4 + 40x3 − 0.06x2 − 1.2x showing all local extrema.

Solution We first show the default graph drawn by our computer algebra sys-
tem (see Figure 3.38a). We show a common default graphing calculator graph in
Figure 3.38b. You can certainly make Figure 3.38b look more like Figure 3.38a by
fooling around with the window some. But with some calculus, you can discover fea-
tures of the graph that would otherwise remain hidden.

First, notice that 

f ′(x) = 12x3 + 120x2 − 0.12x − 1.2

= 12(x2 − 0.01)(x + 10)

= 12(x − 0.1)(x + 0.1)(x + 10).

We show number lines for the three factors in the margin. Observe that

f ′(x)

{
> 0 on (−10,−0.1) ∪ (0.1,∞)

< 0 on (−∞,−10) ∪ (−0.1, 0.1).

f increasing.

f decreasing.

Uncovering Hidden Behavior in a GraphExample 4.2
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Figure 3.37a

y = 2x3 + 9x2 − 24x − 10.
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Figure 3.37b

y = f (x) and y = f ′(x).
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Figure 3.38a

Default CAS graph of
y = 3x4 + 40x3 − 0.06x2 − 1.2x .
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Figure 3.38b

Default calculator graph of
y = 3x4 + 40x3 − 0.06x2 − 1.2x .
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Figure 3.39a

The global behavior of f (x) =
3x4 + 40x3 − 0.06x2 − 1.2x .
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�0.4
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Figure 3.39b

Local behavior of 
f (x) = 3x4 + 40x3 − 0.06x2 − 1.2x.

This says that neither of the machine-generated graphs seen in Figures 3.38a or 3.38b
are adequate, as the behavior on (−∞,−10) ∪ (−0.1, 0.1) cannot be seen in either
graph. As it turns out, no single graph captures all of the behavior of this function.
However, by increasing the range of x-values to the interval [−15, 5], we get the
graph seen in Figure 3.39a. This shows the big picture, what we refer to as the global
behavior of the function. Here, you can see the local minimum at x = −10, which was
missing in our earlier graphs, but the behavior for values of x close to zero is not clear.
To see this, we need a separate graph, restricted to a smaller range of x-values, as seen
in Figure 3.39b.

Notice that here, we can see the behavior of the function for x close to zero quite
clearly. In particular, the local maximum at x = −0.1 and the local minimum at x = 0.1
are clearly visible. We often say that a graph such as Figure 3.39b shows the local
behavior of the function. In Figures 3.40a and 3.40b, we show graphs indicating the
global and local behavior of f (x) (in blue) and f ′(x) (in red) on the same set of axes.
Pay particular attention to the behavior of f ′(x) in the vicinity of local extrema
of f (x).

You may have already noticed a connection between local extrema and the intervals on
which a function is increasing and decreasing. We state this in the following theorem.

10,000

�10,000

y

x
5�15

Figure 3.40a

y = f (x) and y = f ′(x)
(global behavior).

0.4

�1.2

y

x
0.3�0.3

Figure 3.40b

y = f (x) and y = f ′(x)
(local behavior).



It’s easiest to think of this result graphically. If f is increasing to the left of a critical
number and decreasing to the right, then there must be a local maximum at the critical
number (see Figure 3.41a). Likewise, if f is decreasing to the left of a critical number and
increasing to the right, then there must be a local minimum at the critical number (see
Figure 3.41b). By the way, the preceding argument suggests a proof of the theorem. The job
of writing out all of the details is left as an exercise.

Find the local extrema of the function from example 4.1, f (x) = 2x3 + 9x2 − 24x − 10.

Solution We had found in example 4.1 that

f ′(x)

{
>0 on (−∞,−4) ∪ (1,∞)

<0 on (−4, 1).

f increasing.

f decreasing.

It now follows from the first derivative test that f has a local maximum located at
x = −4 and a local minimum located at x = 1.

�

Theorem 4.2 works equally well for a function with critical points where the deriva-
tive is undefined.

Find the local extrema of f (x) = x5/3 − 3x2/3.

Solution We have

f ′(x) = 5

3
x2/3 − 3

(
2

3

)
x−1/3

= 5x − 6

3x1/3
,

so that the critical numbers are 6
5 [ f ′( 6

5 ) = 0] and 0 [ f ′(0) is undefined]. Again drawing
number lines for the factors, we determine where f is increasing and decreasing. Here,
we have placed an × above the 0 on the number line for f ′(x) to indicate that f ′(x) is
not defined at x = 0. From this, we can see at a glance where f ′ is positive and negative:

f ′(x)

{
> 0, on (−∞, 0) ∪ ( 6

5 ,∞)

< 0, on (0, 6
5 ).

f increasing.

f decreasing.

Finding Local Extrema of a Function with 
Fractional ExponentsExample 4.4

Finding Local Extrema Using the First Derivative TestExample 4.3

Theorem 4.2 (First Derivative Test)

Suppose that f is continuous on the interval [a, b] and c ∈ (a, b) is a critical number.
(i) If f ′(x) > 0 for all x ∈ (a, c) and f ′(x) < 0 for all x ∈ (c, b) (i.e., f changes

from increasing to decreasing at c), then f (c) is a local maximum.
(ii) If f ′(x) < 0 for all x ∈ (a, c) and f ′(x) > 0 for all x ∈ (c, b) (i.e., f changes

from decreasing to increasing at c), then f (c) is a local minimum.
(iii) If f ′(x) has the same sign on (a, c) and (c, b), then f (c) is not a local extremum.
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Local minimum.
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Consequently, f has a local maximum at x = 0 and a local minimum at x = 6
5 . These

local extrema are both clearly visible in the graph in Figure 3.42. 

�

Find the local extrema of f (x) = x4 + 4x3 − 5x2 − 31x + 29 and draw a graph.

Solution A graph of y = f (x) using the most common graphing calculator default
window appears in Figure 3.43. Without further analysis, we do not know if this graph
shows all of the significant behavior of the function. [Note that some fourth-degree poly-
nomials (e.g., f (x) = x4) have graphs that look very much like the one in Figure 3.43.]
First, we compute 

f ′(x) = 4x3 + 12x2 − 10x − 31.

Unlike the last several examples, this derivative does not easily factor. A graph of
y = f ′(x) (see Figure 3.44) reveals three zeros, one near each of x = −3, −1.5, and
1.5. Since a cubic polynomial has at most three zeros, there are no others. Using
Newton’s method or some other root-finding method [applied to f ′(x)], we can find
approximations to the three zeros of f ′. We get a ≈ −2.96008, b ≈ −1.63816 and
c ≈ 1.59824. From Figure 3.44, we can see that f ′(x) is positive for a < x < b and for
x > c and is negative elsewhere. That is,

f ′(x) > 0 on (a, b) ∪ (c,∞) f increasing.

and

f ′(x) < 0 on (−∞, a) ∪ (b, c). f decreasing.

You can quickly read off the local extrema: a local minimum at a ≈ −2.96008, a local
maximum at b ≈ −1.63816 and a local minimum at c ≈ 1.59824. Since only the local
minimum at x = c is visible in the graph in Figure 3.43, this graph is clearly not repre-
sentative of the behavior of the function. By narrowing the range of displayed x-values
and widening the range of displayed y-values, we obtain the far more useful graph seen in
Figure 3.45. You should convince yourself, using the preceding analysis, that the local
minimum at x = c ≈ 1.59824 is also the absolute minimum.

�

Finding Local Extrema ApproximatelyExample 4.5
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Figure 3.42

y = x5/3 − 3x2/3.
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Figure 3.43

f (x) = x4 + 4x3 − 5x2 − 31x + 29.
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Figure 3.44

f ′(x) = 4x3 + 12x2 − 10x − 31.
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Figure 3.45

f (x) = x4 + 4x3 − 5x2 − 31x + 29.
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EXERCISES 3.4

1. Suppose that f (0) = 2 and f (x) is an increasing func-
tion. To sketch the graph of y = f (x), you could start by

plotting the point (0, 2). Filling in the graph to the left, would
you move your pencil up or down? How does this fit with the
definition of increasing?

2. Suppose you travel east on an east-west interstate high-
way. You reach your destination, stay a while and then

return home. Explain the First Derivative Test in terms of your
velocities (positive and negative) on this trip.

3. Suppose that you have a differentiable function f(x) with
two critical numbers. Your computer has shown you a

graph that looks like the one below.

Discuss the possibility that this is a representative graph: that
is, is it possible that there are any important points not shown in
this window?

4. Suppose that the function in exercise 3 has three critical
numbers. Explain why the graph is not a representative

graph. Explain how you would change the graphing window to
show the rest of the graph.

In exercises 5–14, find (by hand) the intervals where the function
is increasing and decreasing. Verify your answers by graphing
both f (x) and f ′ (x).

5. y = x3 − 3x + 2 6. y = x3 + 2x2 + 1

7. y = x4 − 8x2 + 1 8. y = x3 − 3x2 − 9x + 1

9. y = (x + 1)2/3 10. y = (x − 1)1/3

11. y = sin 3x 12. y = sin2 x

13. y = ex 2−1 14. y = ln(x2 − 1)

10

�10

y

x
4�4

In exercises 15–34, find the x-coordinates of all extrema and
sketch a graph.

15. y = x3 + 2x2 − x − 1 16. y = x3 + 4x − 2

17. y = x4 + 2x2 − x + 2 18. y = x5 + 2x4 − x2 + 1

19. y = x
√

x2 + 1 20. y = x√
x2 + 1

21. y = xe−2x 22. y = x2e−x

23. y = ln x2 24. y = e−x 2

25. y = x

x2 − 1
26. y = x2

x2 − 1

27. y = x3

x2 − 1
28. y = x2

x2 + 1

29. y = sin x + cos x 30. y = cos x − x

31. y = √
x3 + 3x2 32. y = 2x1/2 − 4x−1/2

33. y = x2/3 − 2x−1/3 34. y = x4/3 + 4x1/3

In exercises 35–42, find the x-coordinates of all extrema and
sketch graphs showing global and local behavior of the function.

35. y = x3 − 13x2 − 10x + 1

36. y = x3 + 15x2 − 70x + 2

37. y = x4 − 15x3 − 2x2 + 40x − 2

38. y = x4 − 16x3 − 0.1x2 + 0.5x − 1

39. y = x5 − 200x3 + 605x − 2

40. y = x4 − 0.5x3 − 0.02x2 + 0.02x + 1

41. y = (x2 + x + 0.45)e−2x

42. y = x5 ln 8x2

In exercises 43–46, sketch a graph of a function with the given
properties.

43. f (0) = 1, f (2) = 5, f ′(x) < 0 for x < 0 and x > 2,
f ′(x) > 0 for 0 < x < 2.
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44. f (−1) = 1, f (2) = 5, f ′(x) < 0 for x < −1 and x > 2,
f ′(x) > 0 for −1 < x < 2, f ′(−1) = 0, f ′(2) does not exist.

45. f (3) = 0, f ′(x) < 0 for x < 0 and x > 3, f ′(x) > 0 for 
0 < x < 3, f ′(3) = 0, f (0) and f ′(0) do not exist.

46. f (1) = 0, lim
x→∞

f (x) = 2, f ′(x) < 0 for x < 1, f ′(x) > 0 for

x > 1, f ′(1) = 0.

47. Suppose an object has position function s(t), velocity function
v(t) = s ′(t) and acceleration function a(t) = v′(t). If a(t) > 0,
then the velocity v(t) is increasing. Sketch two possible veloc-
ity functions, one with velocity getting less negative and one
with velocity getting more positive. In both cases, sketch pos-
sible position graphs. The position graph should be curved
(nonlinear). Does it look more like part of an upward-curving
parabola or a downward-curving parabola? We look more
closely at curving in section 3.5.

48. Repeat exercise 47 for the case where a(t) < 0.

49. Prove Theorem 4.2 (The First Derivative Test).

50. Give a graphical argument that if f (a) = g(a) and f ′(x) >

g′(x) for all x > a, then f (x) > g(x) for all x > a. Use the
Mean Value Theorem to prove it.

In exercises 51–54, use the result of exercise 50 to verify the
inequality.

51. 2
√

x > 3 − 1

x
for x > 1

52. x > sin x for x > 0

53. ex > x + 1 for x > 0

54. x − 1 > ln x for x > 1

55. Give an example showing that the following statement is false.
If f (0) = 4 and f (x) is a decreasing function, then the equation
f (x) = 0 has exactly one solution.

56. Determine if the following statement is true or false: If f (0) =
4 and f (x) is an increasing function, then the equation f (x) = 0
has no solutions.

57. Suppose that the total sales of a product after t months is given
by s(t) = √

t + 4 thousand dollars. Compute and interpret s ′(t).

58. In exercise 57, show that s ′(t) > 0 for all t > 0. Explain in
business terms why it is impossible to have s ′(t) < 0.

59. In this exercise, you will play the role of professor and con-
struct a tricky graphing exercise. The first goal is to find a func-
tion with local extrema so close together that they’re difficult to
see. For instance, suppose you want local extrema at x = −0.1
and x = 0.1. Explain why you could start with f ′(x) =
(x − 0.1)(x + 0.1) = x2 − 0.01. Look for a function whose
derivative is as given. Graph your function to see if the extrema
are “hidden.’’ Next, construct a polynomial of degree 4 with
two extrema very near x = 1 and another near x = 0.

60. In this exercise, we look at the ability of fireflies to syn-
chronize their flashes. (To see a remarkable demonstra-

tion of this ability, see David Attenborough’s video series
Trials of Life.) Let the function f (t) represent an individual
firefly’s rhythm, so that the firefly flashes whenever f (t) equals
an integer. Let e(t) represent the rhythm of a neighboring fire-
fly, where again e(t) = n, for some integer n, whenever the
neighbor flashes. One model of the interaction between fireflies
is f ′(t) = ω + A sin[e(t) − f(t)] for constants ω and A. If the
fireflies are synchronized (e(t) = f (t)), then f ′(t) = ω, so the
fireflies flash every 1/ω time units. Assume that the difference
between e(t) and f (t) is less than π . Show that if f (t) < e(t),
then f ′(t) > ω. Explain why this means that the individual
firefly is speeding up its flash to match its neighbor. Similarly,
discuss what happens if f (t) > e(t).

61. The HIV virus attacks specialized T cells that trigger the
human immune system response to a foreign substance.

If T(t) is the population of uninfected T cells at time t (days)
and V(t) is the population of infectious HIV in the bloodstream,
a model that has been used to study AIDS is given by the fol-
lowing differential equation that describes the rate at which
the population of T cells changes.

T ′(t) = 10

[
1 + 1

1 + V (t)

]
− 0.02T(t) + 0.01

T (t)V (t)

100 + V (t)
−

0.000024T (t)V(t).

If there is no HIV present [that is, V(t) = 0] and T(t) = 1000,
show that T ′(t) = 0. Explain why this means that the T-cell
count will remain constant at 1000 (cells per cubic mm). Now,
suppose that V(t) = 100. Show that if T (t) is small enough,
then T ′(t) > 0 and the T-cell population will increase. On the
other hand, if T (t) is large enough, then T ′(t) < 0 and the T-cell
population will decrease. For what value of T(t) is T ′(t) = 0?
Even though this population would remain stable, explain why
this would be bad news for the infected human.


