
CONCAVITY

In section 3.4, we saw how to determine where a function is increasing and decreasing and
how this relates to drawing a graph of the function. At this point, we need to see how to re-
fine the shape of a graph. First, you must realize that simply knowing where a function in-
creases and decreases is not sufficient to draw good graphs. In Figures 3.46a and 3.46b, we
show two very different shapes of increasing functions joining the same two points.

3.5
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Figure 3.46a

Increasing function.
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Figure 3.46b

Increasing function.
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Figure 3.47a

Concave up increasing.

ba
x

y

Figure 3.47b

Concave down increasing.

So, given that a graph joins two particular points and is increasing, which of the two
shapes shown do we draw? Without further information, there’s no way to tell. Realize that
this is an important distinction to make. For example, suppose that Figure 3.46a or 3.46b
depicts the balance in your bank account. Both indicate a balance that is growing. Notice
that the rate of growth in Figure 3.46a, is increasing, while the rate of growth depicted in
Figure 3.46b is decreasing. Which would you want to have describe your bank balance?
Why? 

Figures 3.47a and 3.47b are the same as Figures 3.46a and 3.46b, respectively, but
with a few tangent lines drawn in.

Notice that although all of the tangent lines have positive slope [since f ′ (x) > 0], the
slopes of the tangent lines in Figure 3.47a are increasing, while those in Figure 3.47b are
decreasing. We call the graph in Figure 3.47a concave up and the graph in Figure 3.47b
concave down. The situation is similar for decreasing functions. In Figures 3.48a and
3.48b, we show two different shapes of decreasing function. Again, although both functions
are decreasing, the one shown in Figure 3.48a is concave up (slopes of tangent lines
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increasing) and the one shown in Figure 3.48b is concave down (slopes of tangent lines
decreasing). We have the following definition.

How can you tell when f ′ is increasing or decreasing? The derivative of f ′ (i.e., f ′′)
yields that information. The following theorem connects this definition with what we al-
ready know about increasing and decreasing functions. The proof of the theorem is a
straightforward application of Theorem 4.1 to Definition 5.1.

Determine where the graph of f (x) � 2x3 + 9x2 − 24x − 10 is concave up and concave
down and draw a graph showing all significant behavior of the function. 

Solution Here, we have

f ′ (x) � 6x2 + 18x − 24

and from our work in example 4.3, we have 

f ′(x)

{
> 0 on (−∞,−4) ∪ (1,∞)

< 0 on (−4, 1).

f increasing.

f decreasing.

We now have

f ′′(x) = 12x + 18

{
> 0, for x > − 3

2

< 0, for x < − 3
2 .

Concave up.

Concave down.

Using all of this information, we are able to draw the graph shown in Figure 3.49.
Notice that at the point 

(− 3
2 , f

(− 3
2

))
, the graph changes from concave down to con-

cave up. Such points are called inflection points. More precisely, we have the follow-
ing definition.

Definition 5.2

Suppose that f is continuous on the interval (a, b) and that the graph changes concavity
at a point c ∈ (a, b) (i.e., the graph is concave down on one side of c and concave up on
the other). Then, the point (c, f (c)) is called an inflection point of f.

Determining ConcavityExample 5.1

Theorem 5.1

Suppose that f ′′ exists on an interval I.
(i) If f ′′(x) > 0 on I, then the graph of f is concave up on I.
(ii) If f ′′(x) < 0 on I, then the graph of f is concave down on I.

Definition 5.1

For a function f that is differentiable on an interval I, the graph of f is
(i) concave up on I, if f ′ is increasing on I or
(ii) concave down on I, if f ′ is decreasing on I.
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Figure 3.48a

Concave up.
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y

Figure 3.48b

Concave down.
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Inflection
point

Figure 3.49

y = 2x3 + 9x2 − 24x − 10.

N O T E S

If (c, f (c)) is an inflection point, then
either f ′′(c) � 0 or f ′′(c) is undefined.
So, finding all points where f ′′(x) is
zero or is undefined gives you all pos-
sible candidates for inflection points.
But beware: not all points where f ′′(x)
is zero or undefined correspond to in-
flection points.



Determine where the graph of f (x) � x4 − 6x2 + 1 is concave up and concave down,
find any inflection points and draw a graph showing all significant features.

Solution Here, we have

f ′(x) = 4x3 − 12x = 4x(x2 − 3)

= 4x(x − √
3) (x + √

3).

We have drawn number lines for the factors of f ′(x) in the margin. From this, notice that

f ′(x)

{
> 0, on (−√

3, 0) ∪ (
√

3,∞)

< 0, on (−∞,−√
3) ∪ (0,

√
3).

f increasing.

f decreasing.

Next, we have

f ′′(x) = 12x2 − 12 = 12(x − 1)(x + 1).

We have drawn number lines for the two factors in the margin. From this, we can see
that

f ′′(x)

{
> 0, on (−∞,−1) ∪ (1,∞)

< 0, on (−1, 1).

Concave up.

Concave down.

So that you can see this information at a glance, we have indicated the concavity below
the bottom number line, with small concave up and concave down segments. Finally,
observe that since the graph changes concavity at x � −1 and x � 1, there are inflection
points located at (−1, −4) and (1, −4). Using all of this information, we are able to draw
the graph shown in Figure 3.50. For your convenience, we have reproduced the number
lines for f ′(x) and f ′′(x) together above the figure.

�

As we see in the following example, having f ′′(x) � 0 does not imply the existence of
an inflection point.

Determine the concavity of f(x) � x4 and locate any inflection points.

Solution There’s nothing tricky about this function. We have f ′(x) � 4x3 and
f ′′(x) � 12x2. Since f ′(x) > 0 for x > 0 and f ′(x) < 0 for x < 0, we know that f is in-
creasing for x > 0 and decreasing for x < 0. Further, f ′′(x) > 0 for all x �� 0, while
f ′′(0) � 0. So, the graph is concave up for x �� 0. Further, even though f ′′(0) � 0, there
is no inflection point at x � 0. We show a graph of the function in Figure 3.51.

�

There is also a connection between second derivatives and extrema. Suppose that
f ′ (c) � 0 and that the graph of f is concave down in some open interval containing c. Then,
nearby x � c, the graph looks like that in Figure 3.52a and hence, f(c) is a local maximum.

A Graph with No Inflection PointsExample 5.3

Determining Concavity and Locating Inflection PointsExample 5.2
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Figure 3.50

y = x4 − 6x2 + 1.
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Figure 3.51

y = x4.
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Likewise, if f ′(c) � 0 and the graph of f is concave up in some open interval containing c,
then nearby x � c, the graph looks like that in Figure 3.52b and hence, f (c) is a local
minimum.

More precisely, we have the following theorem.

We leave a formal proof of this theorem as an exercise. When applying the theorem,
simply think about Figures 3.52a and 3.52b.

Use the second derivative test to find the local extrema of f (x) = x4 − 8x2 + 10.

Solution Here,

f ′(x) = 4x3 − 16x = 4x(x2 − 4)

= 4x(x − 2)(x + 2).

Thus, the critical numbers are x = 0, 2 and −2. We can test these using the second
derivative test as follows. We have

f ′′(x) = 12x2 − 16

and so,

f ′′(0) = −16 < 0,

f ′′(−2) = 32 > 0

and

f ′′(2) = 32 > 0.

Thus, f (0) is a local maximum and f (−2) and f (2) are local minima. We show a graph
of y = f (x) in Figure 3.53.

�

If f ′′(c) = 0 or f ′′(c) is undefined, the second derivative test yields no conclusion. That is, f (c) may
be a local maximum, a local minimum or neither. In this event, we must rely solely on first derivative
information (i.e., the first derivative test) to determine if f (c) is a local extremum or not. We illus-
trate this with the following example.

Remark 5.1

Using the Second Derivative Test to Find ExtremaExample 5.4

Theorem 5.2  (Second Derivative Test)

Suppose that f is continuous on the interval (a, b) and f ′(c) � 0, for some number 
c ∈ (a, b).
(i) If f ′′(c) < 0, then f (c) is a local maximum and 

(ii) if f ′′(c) > 0, then f (c) is a local minimum.
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Figure 3.53

y = x4 − 8x2 + 10.

f �(c) � 0

f ��(c) � 0
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Figure 3.52a

Local maximum.

f �(c) � 0

f ��(c) � 0

x

y

c

Figure 3.52b

Local minimum.



Use the second derivative test to try to classify any local extrema for (a) f (x) = x3,

(b) g(x) = x4 and (c) h(x) = −x4.

Solution (a) Note that f ′(x) = 3x2 and f ′′(x) = 6x . So, the only critical number
is x = 0 and f ′′(0) = 0, also. We leave it as an exercise to show that the point (0, 0) is
not a local extremum (see Figure 3.54a).
(b) We have g′(x) = 4x3 and g′′(x) = 12x2. Again, the only critical number is x = 0
and g′′(0) = 0. In this case, though, g′(x) < 0 for x < 0 and g′(x) > 0 for x > 0. So,
by the first derivative test, (0, 0) is a local minimum (see Figure 3.54b).
(c) Finally, we have h′(x) = −4x3 and h′′(x) = −12x2. Once again, the only critical
number is x = 0, h′′(0) = 0 and we leave it as an exercise to show that (0, 0) is a local
maximum for h (see Figure 3.54c).

�

We can use first and second derivative information to help produce a meaningful graph
of a function, as in the following example.

Draw a graph of f (x) = x + 25
x , showing all significant features. 

Solution The first thing that you should notice here is that the domain of f con-
sists of all real numbers other than x = 0. Next, we have

f ′(x) = 1 − 25

x2
= x2 − 25

x2
Add the fractions.

= (x − 5)(x + 5)

x2
.

So, the only two critical numbers are x = −5, 5. (Why is x = 0 not a critical number?)
Looking at the three factors in f ′(x), we get the number lines shown in the margin.

Thus,

f ′(x)

{
>0, on (−∞,−5) ∪ (5,∞)

<0, on (−5, 0) ∪ (0, 5).

f increasing.

f decreasing.

Further,

f ′′(x) = 50

x3

{
>0, on (0,∞)

<0, on (−∞, 0).

Concave up.

Concave down.

Be careful here. There is no inflection point on the graph, even though the graph is con-
cave up on one side of x = 0 and concave down on the other. (Why not?) We can now
use either the first derivative test or the second derivative test to determine the local ex-
trema. By the second derivative test,

f ′′(5) = 50

125
> 0

Drawing a Graph of a Rational FunctionExample 5.6

Functions for Which the Second Derivative 
Test Is InconclusiveExample 5.5
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y = x3.
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y = x4.
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and

f ′′(−5) = − 50

125
< 0,

so that there is a local minimum at x = 5 and a local maximum at x = −5. Finally , be-

near x = 0, since 0 is not in the domain of f. We have

lim
x→0+

f (x) = lim
x→0+

(
x + 25

x

)
= ∞

and

lim
x→0−

f (x) = lim
x→0−

(
x + 25

x

)
= −∞.

So, there is a vertical asymptote at x = 0. Putting together all of this information, we get
the graph shown in Figure 3.55.

�

In example 5.6, we computed lim
x→0+

f (x) and lim
x→0−

f (x) to uncover the behavior of the

function near x = 0. We needed to consider this since x = 0 was not in the domain of f. In
the following example, we’ll see that since x = −2 is not in the domain of f ′ (although it
is in the domain of f ), we must compute lim

x→−2+
f ′(x) and lim

x→−2−
f ′(x). This will tell us

about the behavior of the tangent lines near x = −2.

Draw a graph of f (x) = (x + 2)1/5 + 4, showing all significant features.

Solution First, notice that the domain of f is the entire real line. We also have

f ′(x) = 1

5
(x + 2)−4/5 > 0, for x �= −2.

So, f is increasing everywhere, except at x = −2 [the only critical number , where
f ′(−2) is undefined]. This also says that f has no local extrema. Further ,

f ′′(x) = − 4

25
(x + 2)−9/5

{
> 0, on (−∞,−2)

< 0, on (−2,∞).

Conca ve up.

Conca ve do wn.

So, there is an inflection point at x = −2. In this case, f ′(x) is undefined at x = −2.

Since −2 is in the domain of f , but not in the domain of f ′, we consider

lim
x→−2−

f ′(x) = lim
x→−2−

1

5
(x + 2)−4/5 = ∞

and

lim
x→−2+

f ′(x) = lim
x→−2+

1

5
(x + 2)−4/5 = ∞.

This says that the graph has a vertical tangent line at x = −2. We obtain the graph
shown in Figure 3.56.

�

A Function with a Vertical Tangent Line
at an Inflection PointExample 5.7
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y = (x + 2)1/5 + 4.
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6.

7.

8.

In exercises 9–40, find the intervals of increase and decrease, all
local extrema, the intervals of concavity, all inflection points and
sketch a graph.

9. f (x) = x3 − 3x2 + 4 10. f (x) = x3 + 3x2 − 6x

11. f (x) = x4 − 2x2 + 1 12. f (x) = x4 + 4x − 2

13. f (x) = x + 1/x 14. f (x) = x2 − 16/x

15. f (x) = x3 − 6x + 1 16. f (x) = x3 + 3x − 1

y

x
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1. It is often said that a graph is concave up if it “holds
water.’’ This is certainly true for parabolas like y = x2,

but is it true for graphs like y = 1/x2 ? It is always helpful to
put a difficult concept into everyday language, but the danger is
in oversimplification. Do you think that “holds water’’ is help-
ful or can it be confusing? Give your own description of con-
cave up, using everyday language. (Hint: One popular image
involves smiles and frowns.)

2. Find a reference book with the population of the United
States since 1800. From 1800 to 1900, the numerical

increase by decade increased. Argue that this means that the
population curve is concave up. From 1960 to 1990, the
numerical increase by decade has been approximately constant.
Argue that this means that the population curve is near a point
of zero concavity. Why does this not necessarily mean that we
are at an inflection point? Argue that we should hope, in order
to avoid overpopulation, that it is indeed an inflection point.

3. The goal of investing in the stock market is to buy low
and sell high. But, how can you tell whether a price has

peaked or not? Once a stock price goes down, you can see that
it was at a peak but then it’s too late to do anything about it!
Concavity can help. Suppose a stock price is increasing and the
price curve is concave up. Why would you suspect that it will
continue to rise? Is this a good time to buy? Now, suppose the
price is increasing but the curve is concave down. Why should
you be preparing to sell? Finally, suppose the price is decreas-
ing. If the curve is concave up, should you buy or sell? What if
the curve is concave down?

4. Suppose that f (t) is the amount of money in your bank
account at time t. Explain in terms of spending and sav-

ing what would cause f (t) to be decreasing and concave down;
increasing and concave up; decreasing and concave up.

In exercises 5–8, estimate the intervals where the function is con-
cave up and concave down. (Hint: Estimate where the slope is
increasing and decreasing.)

5. y
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EXERCISES 3.5



17. f (x) = x4 + 4x3 − 1 18. f (x) = x4 + 4x2 + 1

19. f (x) = xe−x 20. f (x) = e−x 2

21. f (x) = x2
√

x2 − 9 22. f (x) = x
√

x2 − 9

23. f (x) = (x2 + 1)2/3 24. f (x) = x ln x

25. f (x) = x2

x2 − 9
26. f (x) = x

x + 2

27. f (x) = sin x + cos x 28. f (x) = x + cos x

29. f (x) = e−x sin x 30. f (x) = e−2x cos x

31. f (x) = x3/4 − 4x1/4 32. f (x) = x2/3 − 4x1/3

33. f (x) = 3
√

2x2 − 1 34. f (x) =√
x3 + 1

35. f (x) = x4 − 26x3 + x

36. f (x) = 2x4 − 11x3 + 17x2

37. f (x) = x2 − 5x + 4

x

38. f (x) = x2 − 1

x

39. f (x) = x4 − 16x3 + 42x2 − 39.6x + 14

40. f (x) = x4 + 32x3 − 0.02x2 − 0.8x

In exercises 41–46, sketch a graph with the given properties.

41. f (0) = 2, f ′(x) > 0 for all x, f ′(0) = 1, f ′′(x) > 0 for x > 0,
f ′′(x) < 0 for x < 0, f ′′(0) = 0

42. f (0) = 1, f ′(x) ≥ 0 for all x, f ′(0) = 0, f ′′(x) > 0 for x > 0,
f ′′(x) < 0 for x < 0, f ′′(0) = 0

43. f (0) = 0, f ′(x) > 0 for x < −1 and −1 < x < 1, f ′(x) < 0
for x > 1, f ′′(x) > 0 for x < −1, 0 < x < 1 and x > 1,

f ′′(x) < 0 for −1 < x < 0

44. f (0) = 2, f ′(x) > 0 for all x, f ′(0) = 1, f ′′(x) > 0 for
x < 0, f ′′(x) < 0 for x > 0

45. f (0) = 0, f (−1) = −1, f (1) = 1, f ′(x) > 0 for x < −1 and
0 < x < 1, f ′(x) < 0 for −1 < x < 0 and x > 1, f ′′(x) < 0
for x < 0 and x > 0

46. f (1) = 0, f ′(x) < 0 for x < 1, f ′(x) > 0 for x > 1,

f ′′(x) < 0 for x < 1 and x > 1
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In exercises 47 and 48, estimate the intervals of increase and de-
crease, the locations of local extrema, intervals of concavity and
locations of inflection points.

47.

48.

49. Repeat exercise 47 if the given graph is of f ′(x) instead of
f (x).

50. Repeat exercise 48 if the given graph is of f ′(x) instead of
f (x).

51. Suppose that w(t) is the depth of water in a city’s water reser-
voir. Which would be better news at time t = 0, w′′(0) = 0.05
or w′′(0) = −0.05 or would you need to know the value of
w′(0) to determine which is better?

52. Suppose that T (t) is a sick person’s temperature at time t .
Which would be better news at time t, T ′′(0) = 2 or T ′′(0) =
−2 or would you need to know the value of T ′(0) and T (0) to
determine which is better?

53. Suppose that a company that spends $x thousand on advertising
sells $s(x) of merchandise, where s(x) = −3x3 + 270x2 −
3600x + 18,000. Find the value of x that maximizes the rate of
change of sales. (Hint: Read the question carefully!)

54. For the sales function in exercise 53, find the inflection point
and explain why in advertising terms this is the “point of di-
minishing returns.’’
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55. Suppose that it costs a company C(x) = 0.01x2 + 40x +
3600 dollars to manufacture x units of a product. For this cost

function, the average cost function is C̄(x) = C(x)
x . Find the

value of x that minimizes the average cost.

56. In exercise 55, the cost function can be related to the efficiency
of the production process. Explain why a cost function that is
concave down indicates better efficiency than a cost function
that is concave up.

57. Show that there is an inflection point at (0, 0) for any function
of the form f (x) = x4 + cx3 , where c is a nonzero constant.
What role(s) does c play in the graph of y = f (x)?

58. The following examples show that there is not a perfect match
between inflection points and places where f ′′(x) = 0. First,
for f (x) = x6, show that f ′′(0) = 0, but there is no inflection
point at x = 0. Then, for g(x) = x |x |, show that there is an
inflection point at x = 0, but that g′′(0) does not exist.

59. Give an example of a function showing that the following state-
ment is false. If the graph of y = f (x) is concave down for all
x , the equation f (x) = 0 has at least one solution.

60. Determine if the following statement is true or false. If
f (0) = 1, f ′′(x) exists for all x and the graph of y = f (x) is
concave down for all x , the equation f (x) = 0 has at least one
solution.

61. One basic principle of physics is that light follows the path of
minimum time. Assuming that the speed of light in the earth’s
atmosphere decreases as altitude decreases, argue that the path
that light follows is concave down. Explain why this means
that the setting sun appears higher in the sky than it really is.
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62. Prove Theorem 5.2 (the Second Derivative Test). (Hint: Think
about what the definition of f ′′(c) says when f ′′(c) > 0 or
f ′′(c) < 0.)

63. The linear approximation that we defined in section 3.1 is
the line having the same location and the same slope as

the function being approximated. Since two points determine a
line, two requirements (point, slope) are all that a linear function
can satisfy. However, a quadratic function can satisfy three re-
quirements since three points determine a parabola (and there are
three constants in a general quadratic function ax2 + bx + c).
Suppose we want to define a quadratic approximation to f (x)

at x = a. Building on the linear approximation, the general
form is g(x) = f (a) + f ′(a)(x − a) + c(x − a)2 for some
constant c to be determined. In this way, show that
g(a) = f (a) and g′(a) = f ′(a). That is, g(x) has the right po-
sition and slope at x = a. The third requirement is that g(x)

have the right concavity at x = a, so that g′′(a) = f ′′(a). Find
the constant c that makes this true. Then, find such a quadratic
approximation for each of the functions sin x , cos x and ex at
x = 0. In each case, graph the original function, linear approx-
imation and quadratic approximation and describe how close
the approximations are to the original functions.

64. In this exercise, we explore a basic problem in genetics.
Suppose that a species reproduces according to the fol-

lowing probabilities: p0 is the probability of having no chil-
dren, p1 is the probability of having one offspring, p2 is the
probability of having two offspring, . . . , pn is the probability
of having n offspring and n is the largest number of offspring
possible. Explain why for each i , we have 0 ≤ pi ≤ 1 and
p0 + p1 + p2 + · · · + pn = 1. We define the function
F(x) = p0 + p1 x + p2 x2 + · · · + pn xn . The smallest non-
negative solution of the equation F(x) = x for 0 ≤ x ≤ 1 rep-
resents the probability that the species becomes extinct. Show
graphically that if p0 > 0 and F ′(1) > 1, then there is a solu-
tion of F(x) = x with 0 < x < 1. Thus, there is a positive
probability of survival. However, if p0 > 0 and F ′(1) < 1,
show that there are no solutions of F(x) = x with 0 < x < 1.
(Hint: First show that F is increasing and concave up.)

OVERVIEW OF CURVE SKETCHING

You might be wondering why you need to spend any more time on curve sketching. We
have already drawn numerous graphs over the last three sections. Besides, with a graphing
calculator or computer algebra system at your disposal, why must you even consider draw-
ing graphs by hand?

Of course, graphing calculators or computer algebra systems are powerful tools today
in the study or application of mathematics. As the authors of this text, we admit it. We have
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