
Preface Visual Guide: Expanding Upon the Text xxiii

V i s u a l  G u i d e :  E x p a n d i n g  
U pon  t h e  T e x t

TOOLS FOR LEARNING

Real-World Emphasis

Real-world examples are an important aid to the understanding of calculus. We introduce
each chapter with a brief application related to the mathematical concepts being devel-
oped in order to put each chapter into a larger problem-solving context. Subsequently,
both examples within the text and exercises are used to further demonstrate the impor-
tance of calculus within the world.

C H A P T E R 3

3MRI of a knee.

APPLICATIONS OF
DIFFERENTIATION
One relatively new test available to physicians for diagnosing injuries and disease is the
MRI. Magnetic resonance imaging (MRI) is used to visualize internal structures, such as
torn cartilage in a knee. The ability to see the physical status of a knee or an internal organ
without surgery is an invaluable aid to physicians and their patients. However, it still takes
an experienced physician to distinguish the important features of an MRI from insignificant
ones. If you have ever looked at an MRI or even a conventional x-ray, you have probably
been amazed at the details that your physician could quickly identify. In the MRI below,
can you identify any damage to the knee? Of course, it always helps to know what you are
looking for.

The ability to accurately read graphs is one of the primary goals of this chapter. By the
end of section 3.6, you should have a good idea of what the significant features of a graph
are. Although we will be looking only at two-dimensional graphs of functions, the language
and skills that you acquire here will transfer to plots of seismic readings, sonar mappings
of the ocean floor and other graphical displays of information that you may encounter.

Most people do not recognize the vast amount of mathematical computation re-
quired to produce a viewable image from an MRI. In an MRI, magnetic fields and pulses
of radio waves are used to determine the distribution of hydrogen atoms in the body (see
Visualization by R. Friedhoff and W. Benzon for more details). The presence of hydro-
gen atoms, in turn, is deduced from the re-
lease of energy during the magnetization
process. (This is a long way from a stan-
dard x-ray image!) By solving countless
equations and performing lengthy calcu-
lations, a computer transforms the energy
data into an accurate image of the interior
of a human body.

Likewise, it may surprise you how
many calculations we must perform to
draw an accurate graph of a function. At
each stage of the graphing process, we
must solve equations to identify significant
features of the graph. Because of the
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increasing) and the one shown in Figure 3.48b is concave down (slopes of tangent lines
decreasing). We have the following definition.

How can you tell when f ′ is increasing or decreasing? The derivative of f ′ (i.e., f ′′)
yields that information. The following theorem connects this definition with what we al-
ready know about increasing and decreasing functions. The proof of the theorem is a
straightforward application of Theorem 4.1 to Definition 5.1.

Determine where the graph of f (x) � 2x3 + 9x2 − 24x − 10 is concave up and concave
down and draw a graph showing all significant behavior of the function. 

Determining ConcavityExample 5.1

Theorem 5.1

Suppose that f ′′ exists on an interval I.
(i) If f ′′(x) > 0 on I, then the graph of f is concave up on I.
(ii) If f ′′(x) < 0 on I, then the graph of f is concave down on I.

Definition 5.1

For a function f that is differentiable on an interval I, the graph of f is
(i) concave up on I, if f ′ is increasing on I or
(ii) concave down on I, if f ′ is decreasing on I.
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Figure 3.48a

Concave up.
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Figure 3.48b

Concave down.
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Figure 3.8

y = 1 − cos x

x2
.

Evaluate lim
x→0

sin x
x .

Solution Again, this limit has the indeterminate form 0
0 and f (x) = sin x and

g(x) = x are both continuous and differentiable everywhere. Finally, g′(x) = d
dx

(x) =
1 �= 0, so that all of the hypotheses of l’Hôpital’s Rule are satisfied. From the graph in -
Figure 3.7, it appears that the limit is approximately 1. We can confirm this suspicion
with l’Hôpital’s Rule. We have

lim
x→0

sin x

x
= lim

x→0

d

dx
(sin x)

d

dx
(x)

= lim
x→0

cos x

1
= 1

1
= 1,

as we proved using a complicated geometric argument in section 2.5.

■

For some limits, you must apply l’Hôpital’s Rule more than once.

Evaluate lim
x→0

1 − cos x
x2 .

Solution Again, this has the indeterminate form 0
0 and it is a simple matter to

verify that the hypotheses of l’Hôpital’s Rule are satisfied. In this case, the graph in
Figure 3.8 indicates the limit to be approximately 0.5. From l’Hôpital’s Rule, we have

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x
,

which again has the indeterminate form 0
0 . In this case, we can verify that the hypothe-

ses of l’Hôpital’s Rule are satisfied for this new limit problem. Applying this again, it
then follows that

lim
x→0

1 − cos x

x2
= lim

x→0

sin x

2x
= lim

x→0

cos x

2
= 1

2
.

■

A Limit Requiring Two Applications of L’Hôpital’s RuleExample 1.6

Revisiting an Old LimitExample 1.5y
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Figure 3.7

y = sin x

x
.

Definitions, Theorems
and Proofs

All formal definitions and theorems are
clearly boxed within the text for easy vi-
sual reference. Selected proofs are pro-
vided for reference. Proofs of some results
are found in Appendix A.

Examples

Each chapter contains a large number of
worked examples, ranging from the simple
and concrete to more complex and abstract.
A thorough understanding of the initial
problem presented and the step-by-step
solution will greatly enhance your problem-
solving capabilities and your further study
of the subject.

Use of Graphs and Tables

Being able to visualize a problem is an
invaluable aid in understanding the con-
cept presented. To this purpose, we have
integrated more than 1500 computer-
generated graphs throughout the text. You
should use them routinely to aid in solving
most problems, even if only as a check on
the reasonableness of an answer. Each
graph and table has been created very care-
fully to ensure that the ideas presented are
clear and accurate. In many places, we
have included multiple graphical
perspectives, such as with the contour and
density plots found in Chapter 12.
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LINEAR APPROXIMATIONS AND L’HÔPITAL’S RULE

For what purpose do you use a scientific calculator? If you think about it, you’ll discover
that there are two distinctly different jobs that calculators do for you. First, they perform
arithmetic operations (addition, subtraction, multiplication and division) much faster than
any of us could hope to do them. It’s not that you don’t know how to multiply 1024 by
1673, but rather that it is time-consuming to carry out this (albeit well-understood) calcu-
lation with pencil and paper. For such problems, calculators are a tremendous convenience,
which none of us would like to live without. Perhaps more significantly, we also use our
calculators to compute values of transcendental functions such as sine, cosine, tangent,
exponentials and logarithms. In the case of these function evaluations, the calculator is
much more than a mere convenience.

If asked to calculate sin(1.2345678) without a calculator, you would probably draw a
blank. Don’t worry, there’s nothing wrong with your background. (Also, don’t worry that
anyone will ever ask you to do this without a calculator.) The problem is that the sine func-
tion is not algebraic. That is, there is no formula for sin x involving only the arithmetic op-
erations. So, how does your calculator “know’’ that sin(1.2345678) ≈ 0.9440056953? In
short, it doesn’t know this at all. Rather, the calculator has a built-in program that generates
approximate values of the sine and other transcendental functions.

In this section, we take a small step into the (very large) world of approximation by
developing a simple approximation method. Although somewhat crude, it points the way

3.1

COMMENTARY AND GUIDANCE

In order to help you best interpret the material presented, we have included many side el-
ements and notes for your reference.

Technology Guidance

We hope that by using this text you will
become proficient at knowing when and how
technology is appropriate within calculus.
Rather than providing key-punching
instructions, we provide advice and guidance
on the proper use of technology, empower-
ing you to explore new problems on your
own. We also provide comments on possible
errors and pitfalls that can be caused due to
an over reliance on technology. This guid-
ance is frequently given within an example
or explanation of a specific technique. How-
ever, an icon is used when this guidance
appears within the general discussion.

absolute minimum). You should try to use your graphing utility to produce a graph of
y = f (x). If you get only half of the graph displayed in Figure 3.26, you have discov-
ered one of the dangers in relying too heavily on technology. The algorithms used by
most calculators and many computers will return a complex number (or an error) when
asked to compute certain fractional powers of negative numbers. This annoying short-
coming presents only occasional difficulties. We mention this here only to make you
aware that technology has limitations.

■

Find the critical numbers and local extrema of f (x) = x3.

Solution It should be clear from Figure 3.27 that f has no local extrema. However,
f ′(x) = 3x2 = 0 for x = 0 (the only critical number of f ). In this case, f has a hori-
zontal tangent line at x = 0, but does not have a local extremum there (or anywhere
else).

■

A Horizontal Tangent at a Point That Is Not
a Local ExtremumExample 3.8

Fermat’s Theorem says that local
extrema can only occur at critical
numbers. This does not say that there
is a local extremum at every critical
number. In fact, this is false, as we
illustrate in examples 3.8 and 3.9.

Remark 3.1

y

2

Remarks Text

Remarks boxes, found both as marginal
and text references, provide a summary or
overview of techniques. These boxes also
foreshadow future ideas related to the topic
being discussed.

Although it seemed to be very efficient in the last two examples, Newton’s method does not always
work. We urge you to make sure that the values coming from the method are getting progressively
closer and closer together (zeroing-in, we hope, on the desired solution). Don’t stop until you’ve
reached the limits of accuracy of your computing device. Also, be sure to compute the value of the
function at the suspected approximate zero. If the function value is not close to zero, do not accept
the value as an approximate zero.

As we illustrate in the following example, Newton’s method requires a good initial
guess in order to find an accurate approximation.

Use Newton’s method to find an approximate zero of f (x) = x3 − 3x2 + x − 1.

Solution From the graph in Figure 3.14, there appears to be a zero on the interval
(2, 3). If you were to use the (not particularly good) initial guess x0 = 1, you would get
x1 = 0, x2 = 1, x3 = 0 and so on. Try this for yourself. Newton’s method is sensitive to
the initial guess and you just made a bad initial guess. If you had instead started with the
improved initial guess x0 = 2, Newton’s method would have quickly converged to the
approximate zero 2.769292354. (Again, try this for yourself.)

■

The Effect of a Bad Guess on Newton’s MethodExample 2.3

y

x

�8

8

2 3

Figure 3.14

y = x3 − 3x2 + x − 1.

Lightbulb Icon

A lightbulb icon indicates the relaying of
an important idea in clear, nontechnical
language. This icon is also used to high-
light a special problem-solving tip within
the text.
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Inflection
point

Figure 3.49

y = 2x3 + 9x2 − 24x − 10.

N O T E S

If (c, f (c)) is an inflection point, then
either f ′′(c) � 0 or f ′′(c) is undefined.
So, finding all points where f ′′(x) is
zero or is undefined gives you all pos-
sible candidates for inflection points.
But beware: not all points where f ′′(x)
is zero or undefined correspond to in-
flection points.

EXERCISES 3.4

1. Suppose that f (0) = 2 and f (x) is an increasing func-
tion. To sketch the graph of y = f (x), you could start by

plotting the point (0, 2). Filling in the graph to the left, would
you move your pencil up or down? How does this fit with the
definition of increasing?

2. Suppose you travel east on an east-west interstate high-
way. You reach your destination, stay a while and then

return home. Explain the First Derivative Test in terms of your
velocities (positive and negative) on this trip.

3. Suppose that you have a differentiable function f(x) with
two critical numbers. Your computer has shown you a

graph that looks like the one below.

Discuss the possibility that this is a representative graph: that
is, is it possible that there are any important points not shown in
this window?

4. Suppose that the function in exercise 3 has three critical
numbers. Explain why the graph is not a representative

graph. Explain how you would change the graphing window to
show the rest of the graph.

10

�10

y

x
4�4

In exercises 15–34, find the x-coordinates of all extrema and
sketch a graph.

15. y = x3 + 2x2 − x − 1 16. y = x3 + 4x − 2

17. y = x4 + 2x2 − x + 2 18. y = x5 + 2x4 − x2 + 1

19. y = x
√

x2 + 1 20. y = x√
x2 + 1

21. y = xe−2x 22. y = x2e−x

23. y = ln x2 24. y = e−x 2

25. y = x

x2 − 1
26. y = x2

x2 − 1

27. y = x3

x2 − 1
28. y = x2

x2 + 1

29. y = sin x + cos x 30. y = cos x − x

31. y = √
x3 + 3x2 32. y = 2x1/2 − 4x−1/2

33. y = x2/3 − 2x−1/3 34. y = x4/3 + 4x1/3

In exercises 35–42, find the x-coordinates of all extrema and
sketch graphs showing global and local behavior of the function.

35. y = x3 − 13x2 − 10x + 1

36. y = x3 + 15x2 − 70x + 2

37. y = x4 − 15x3 − 2x2 + 40x − 2

38. y = x4 − 16x3 − 0.1x2 + 0.5x − 1

End-of-Section Exercises

Each exercise set has been carefully
constructed to reinforce both the concepts
and mechanics of calculus, while
encouraging individual exploration. Our
goal is to create original and imaginative
exercises that provide an appropriate
review of the topics covered in each
section while reinforcing the basic skills
needed to master the concept.

Writing Exercises

Each exercise set begins with a variety of
writing exercises. These exercises can be
used as springboards for discussion and are
intended to give you an opportunity to
carefully consider important mathematical
concepts and ideas and express these in
your own words. Learning to verbalize
mathematical structures is a key skill in
mastering concepts.

CONCEPTUAL UNDERSTANDING THROUGH PRACTICE

We have written this text with a strong problem-solving emphasis, including the introduc-
tion of many topics from graphical, numerical and algebraic points of view. In many
instances, the emphasis on graphical and numerical methods for solving problems frees us
to consider more realistic and complex problems than are usually presented in calculus.
Furthering this emphasis, we have included a variety of exercise types to strengthen your
problem-solving skills.

Notes Text

Notes boxes, found within the margin,
serve to step back from a concept to gain
perspective by adding details, making
connections to previous material or noting
when an example is indicative of a general
pattern.

H I S T O R I C A L N O T E S

Sir Isaac Newton (1642–1727)
An English mathematician and
scientist known as the co-inventor
of calculus. In a 2-year period from
1665 to 1667, Newton made major
discoveries in several areas of
calculus, as well as optics and the
law of gravitation. Newton’s
mathematical results were not
published in a timely fashion.
Instead, techniques such as
Newton’s method were quietly
introduced as useful tools in his
scientific papers. Newton’s
Mathematical Principles of Natural
Philosophy is widely regarded as
one of the greatest achievements of
the human mind.

Historical Notes

These notes provide a historical context for
the development of calculus. Biographical
information about prominent mathemati-
cians and their contributions to the devel-
opment of calculus are given to put the
subject matter in perspective.
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39. Find the point on the graph of y = 2x2 that is closest to (2, 1).

40. Show that the line through the two points of exercise 39 is per-
pendicular to the tangent line to y = 2x2 at (2, 1).

41. A city is building a highway from point A to point B, which is
4 miles east and 6 miles south of point A. The first 4 miles south
of point A is swamp land, where the cost of building the high-
way is $6 million per mile. On dry land, the cost is $2 million
per mile. Find the point on the boundary of swamp land and dry
land to which the highway should be built to minimize the
total cost.

42. Repeat exercise 41 with a cost of $16 million per mile on
swamp land. Explain why the optimal point in this exercise is
west of the optimal point found in exercise 41.

43. A soda can in the shape of a cylinder is to hold 16 ounces. Find
the dimensions of the can that minimizes the surface area of
the can.

44. Suppose that C(x) = 0.02x2 + 4x + 1200 is the cost of manu-
facturing x items. Show that C ′(x) > 0 and explain in business
terms why this has to be true. Show that C ′′(x) > 0 and explain
why this indicates that the manufacturing process is not very
efficient.

45. The charge in an electrical circuit at time t is given by
Q(t) = e−3t sin 2t coulombs. Find the current.

46. If the concentration x(t) of a chemical in a reaction changes
according to the equation x ′(t) = 0.3x(t)[4 − x(t)], find the

49. The cost of manufacturing x items is given by C(x) =
0.02x2 + 20x + 1800. Find the marginal cost function. Com-
pare the marginal cost at x = 20 to the actual cost of producing
the 20th item.

50. For the cost function in exercise 49, find the value of x which
minimizes the average cost C̄(x) = C(x)/x .

51. Let n(t) be the number of photons in a laser field. One
model of the laser action is n′(t) = an(t) − b[n(t)]2 ,

where a and b are positive constants. If n(0) = a/b, what is
n′(0)? Based on this calculation, would n(t) increase, decrease
or neither? If n(0) > a/b, is n′(0) positive or negative? Based
on this calculation, would n(t) increase, decrease or neither? If
n(0) < a/b, is n′(0) positive or negative? Based on this calcu-
lation, would n(t) increase, decrease or neither? Putting this in-
formation together, conjecture the limit of n(t) as t → ∞. Re-
peat this analysis under the assumption that a < 0. [Hint:
Because of its definition, n(t) is positive, so ignore any nega-
tive values of n(t).]

52. One way of numerically approximating a derivative is
by computing the slope of a secant line. For example,

f ′(a) ≈ f (b) − f (a)

b − a
, if b is close enough to a. In this exercise,

we will develop an analogous approximation to the second de-
rivative. Graphically, we can think of the secant line as an ap-
proximation of the tangent line. Similarly, we can match the
second derivative behavior (concavity) with a parabola. Instead
of finding the secant line through two points on the curve, we
find the parabola through three points on the curve. The second
derivative of this approximating parabola will serve as an ap-
proximation of the second derivative of the curve. The first step

Exploratory Exercises

Each exercise set concludes with exploratory exercises that are project-like
assignments designed for you to obtain a sense of the ongoing, exciting nature
of mathematics-related research. These exercises offer excellent opportunities
for group work or discussion, depending on the structure of your individual
calculus course.
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60. In this exercise, we look at the ability of fireflies to syn-
chronize their flashes. (To see a remarkable demonstra-

tion of this ability, see David Attenborough’s video series
Trials of Life.) Let the function f (t) represent an individual
firefly’s rhythm, so that the firefly flashes whenever f (t) equals
an integer. Let e(t) represent the rhythm of a neighboring fire-
fly, where again e(t) = n, for some integer n, whenever the
neighbor flashes. One model of the interaction between fireflies
is f ′(t) = ω + A sin[e(t) − f(t)] for constants ω and A. If the
fireflies are synchronized (e(t) = f (t)), then f ′(t) = ω, so the
fireflies flash every 1/ω time units. Assume that the difference
between e(t) and f (t) is less than π . Show that if f (t) < e(t),
then f ′(t) > ω. Explain why this means that the individual
firefly is speeding up its flash to match its neighbor. Similarly,
discuss what happens if f (t) > e(t).

61. The HIV virus attacks specialized T cells that trigger the
human immune system response to a foreign substance.

If T(t) is the population of uninfected T cells at time t (days)
and V(t) is the population of infectious HIV in the bloodstream,
a model that has been used to study AIDS is given by the fol-
lowing differential equation that describes the rate at which
the population of T cells changes.

T ′(t) = 10

[
1 + 1

1 + V (t)

]
− 0.02T(t) + 0.01

T (t)V (t)

100 + V (t)
−

0.000024T (t)V(t).

In exercises 1 and 2, find the linear approximation to f(x) at x0.

1. f (x) = e3x , x0 = 0 2. f (x) = √
x2 + 3, x0 = 1

In exercises 3 and 4, use a linear approximation to estimate the
quantity.

3. 3
√

7.96 4. sin 3

In exercises 5 and 6, use Newton’s method to find an approxi-
mate root.

5. x3 + 5x − 1 = 0 6. x3 = e−x

7. Explain why Newton’s method fails on x3 − 3x + 2 = 0 with
x0 = 1.

8. Show that the approximation 
1

(1 − x)
≈ 1 + x is valid for

“small” x.

In exercises 9–18, do the following by hand. (a) Find all critical
numbers, (b) identify all intervals of increase and decrease,
(c) determine whether each critical number represents a local
maximum, local minimum or neither, (d) determine all intervals
of concavity and (e) find all inflection points.

9. f (x) = x3 + 3x2 − 9x 10. f (x) = x4 − 4x + 1

11. f (x) = x4 − 4x3 + 2 12. f (x) = x3 − 3x2 − 24x

13. f (x) = xe−4x 14. f (x) = x2 ln x

15. f (x) = x
√

x2 − 4 16. f (x) = (x2 − 1)2/3

17. f (x) = x

x2 + 4
18. f (x) = x√

x2 + 2

In exercises 19–22, find the absolute extrema of the function on
the interval.

19. f (x) = x3 + 3x2 − 9x on [0, 4]

20. f (x) = x3 + 3x2 − 9x on [−4, 0]

21. f (x) = x4/5 on [−2, 3]

22. f (x) = x2e−x on [−1, 4]

In exercises 23–26, find the x-coordinates of all local extrema.

23. f (x) = x3 + 4x2 + 2x 24. f (x) = x4 − 3x2 + 2x

25. f (x) = x5 − 2x2 + x 26. f (x) = x5 + 4x2 − 4x

27. Sketch a graph of a function with f (−1) = 2, f (1) = −2,
f ′(x) < 0 for −2 < x < 2, f ′(x) > 0 for x < −2 and x > 2.

28. Sketch a graph of a function with f ′(x) > 0 for x �= 0, f ′(0)

undefined, f ′′(x) > 0 for x < 0 and f ′′(x) < 0 for x > 0.

In exercises 29–38, sketch a graph of the function and com-
pletely discuss the graph.

29. f (x) = x4 + 4x3 30. f (x) = x4 + 4x2

31. f (x) = x4 + 4x 32. f (x) = x4 − 4x2

33. f (x) = x

x2 + 1
34. f (x) = x

x2 − 1

35. f (x) = x2

x2 + 1
36. f (x) = x2

x2 − 1

37. f (x) = x3

x2 − 1
38. f (x) = 4

x2 − 1

C H A P T E R  R E V I E W  E X E R C I S E S

Chapter Review Exercises

Chapter Review Exercise sets are
provided as an overview of the chapter
and will test your understanding prior to
continuing with the text.
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Access to Calculus: An Interactive Text is included with each copy of this book. Based on
the text itself, this program takes key examples and figures from the text and puts them into
an interactive format for further practice. Examples and figures that are expanded on are
indicated by an icon within the text. We guarantee that this program will become one of
the best study partners that you can find.

Within Calculus: An Interactive Text you will find:

xxviii Preface Beyond the Text

Online Text

This study partner provides your entire Calculus text online for easy reference from any
computer. In addition to the textual elements themselves, all figures, examples, theorems,
and definitions have been compiled into individual libraries for quick access. A complete
online glossary of terms has also been provided. These items can be accessed individually
or through links within the text, where appropriate.

b e yond  t h e  t e x t
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Practice Problems

Several key examples per section have been used to create
algorithmically-generated practice problems, developed to
further your problem-solving skills and to clarify your
understanding of concepts. If you are having difficulties
understanding an example these practice problems will walk
you through the problem, providing hints and if necessary, will
provide you with the fully worked solution and textual
reference to help explain the concept. You can then request a
similar problem to try again until you feel comfortable with
your understanding. A Chapter Quiz consisting of a random
sampling of problems from each section can be used to test
your understanding prior to a quiz or test. Rather than walking
you through the solution of the problems, this quiz will record
your answers and provide detailed feedback at the end of the
quiz. There are over 400 practice problems available for
your use.

Preface Beyond the Text xxix

Interactivities

Key figures within each section have been
turned into interactive Java applets for your
further exploration. By interacting with the
figure, you will be able to clearly see the
usefulness and limitations of the concept
being presented. Additionally, a Chapter In-
teractivity has been provided to help con-
ceptualize the material developed through-
out the chapter. These Chapter
Interactivities often use real-world
visualization to enhance the meaning behind
the concepts being presented. There
are over 200 Java applets provided within
this program for your use.

Additional Features

Student Solutions Manual
Fully worked solutions for select odd-numbered exercises within the text can be accessed directly through the End-of-Section
and End-of-Chapter exercises within the online text. A print version of this manual is available for purchase for those who
choose that option.
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Lab Projects
A technology-based lab project is provided for your further exploration. These real-world
projects will enable you to practice your problem-solving skills by applying technology
as appropriate within a controlled environment.

Web Explorations and Web Links
The World Wide Web has become an invaluable research tool, expanding real-world
emphasis within calculus much further than could ever be done within a text. We have
provided fun exploratory exercises accessing interesting real-world data as well as
monthly updated chapter-specific links for further research of topics covered within the
chapter.

Tools
A fully functional online graphing calculator is provided for quick access while working
with the program. In addition, access to NetTutor™—your online tutorial service—and
the text-specific Online Learning Center is provided.

xxx Preface Beyond the Text
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