V. DIFFERENTIAL RELATIONSFOR A FLUID PARTICLE

This chapter presents the development and application of the basic differential
equations of fluid motion. Simplifications in the general equations and common
boundary conditions are presented that allow exact solutions to be obtained. Two
of the most common simplifications are 1) steady flow and 2) incompressible flow.

The Acceleration Field of a Fluid

A general expression of the flow field velocity vector is given by

VE.H=Tu(xy,zt) + [ v(x y,zt) + kw(x,y, zt)
One of two reference frames can be used to specify the flow field characteristics

eulerian — the coordinates are fixed and we observe the flow field
characteristics as it passes by the fixed coordinates.

lagrangian - the coordinates move through the flow field following individual
particles in the flow.

Since the primary equation used in specifying the flow field velocity is based on
Newton’s second law, the acceleration vector is an important solution parameter.
In cartesian coordinates, this is expressed as

a:d_Vzﬁ_V_l_%Jﬁ_V +V§_V+W8V§:dv+(\7u_ﬂ)\7
dt ot 0 X ay 0z ot
total local convective

The acceleration vector is expressed in terms of three types of derivatives:
Total acceleration = total derivative of velocity vector

= local derivative + convective derivative of velocity vector
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Likewise, the total derivative (also referred to as the substantial derivative ) of
other variables can be expressed in a similar form, e.g.

d—Pzg—P+§JdP +vdP+Wa—P§=Q+(\7D_D)P
dt Jt d X oy 0z ot

Example4.1
Given the eulerian velocity-vector field

V =3ti +xz] +ty’k
find the acceleration of the particle.

For the given velocity vector, the individual components are

2
u=3t V=X7Z w =1ty

Evaluating the individual components for the acceleration vector, we obtain

ov. .

—=3i+0] +yKk

It | I Ty

oV _ oV oV .
— = zj — =2tyk —— = X]
Jd X ay 0z

Substituting, we obtain

av . -
TSIy E0E) F 6D Qyk @) ()

After collecting terms, we have

(31_\: = 3i+@tzttxy)j+(2xyzt+y)k ans
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The Differential Equation of Conservation of Mass

If we apply the basic concepts of conservation of mass to a differential control
volume, we obtain a differential form for the continuity equation in cartesian
coordinates:

i
a_f S u)+ —(pv)+ (pW) 0

in cylindrical coordinates:

0 _
aﬂ?ﬂ“’ v,)+1 e(pv9)+d—z(pvz)—0

and in vector form:

op

m+m@w 0

Steady Compressible Flow

For steady flow, the term — = 0 and all properties are function of position only.

The previous equations simplify to

Cartesian: (p )+ (pV)+ (pW) 0

Cylindrical: 19 (r er) + %% (pve) + 012 (p Vz) =0
Incompressible Flow

For incompressible flow, density changes are negligible, p = const.,and —— = 0

In the two coordinate systems, we have
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du O0dv Ow

Cartesian: + + =0

0 x oy 0 z
Cylindrical: . dr ( ) 30 (Ve) _(V ) 0
Key Point:

It is noted that the assumption of incompressible flow is not restricted to fluids
which cannot be compressed, e.g. liquids. Incompressible flow is valid for

(1) when the fluid is essentially incompressible (liquids) and (2) for compressible
fluids for which compressibility effects are not significant for the problem being
considered.

The second case is assumed to be met when the Mach number is less than 0.3:

=V/c <0.3 For these conditions, gas flows can be considered
incompressible

The Differential Equation of Linear Momentum

If we apply Newton’s Second Law of Motion to a differential control volume we
obtain the three components of the differential equation of linear momentum. In
cartesian coordinates, the equations are expressed in the form:

; i 3 Tyx i T, il R} o IR
08, 9P 4 OTex 4 OTwx | OTgp o f U 4 S8 4 =2 .u_—J
' dx dx dy 0z i ilx dy dz
A o Ty Ty &7y i s au dur
PEy — . + 2 4 2y %‘1— = el -+ W —
. ay X iy iz ot dx 'y oz
i AT i 0 Tes aw -:'11 oW dw !
psi._ J-‘E - E-. -+ —_— L T'I L e —_— e <+ 1 = } W =Ty
s iz ax dy oz bl dy iz |

Inviscid Flow: Euler’s Equation

If we assume the flow is frictionless, all of the shear stress terms drop out. The
resulting equation is known as Euler’s equation and in vector form is given by
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dV
-OP=p—
fols P

where —— is the total or substantial derivative of the velocity as discussed

previously and [P is the usual vector gradient of pressure. This form of Euler’s

equation can be integrated along a streamline to obtain the frictionless Bernoulli’s
equation ( Sec. 4.9).

Newtonian Fluid: Constant Density and Viscosity

For Newtonian fluids, viscous stresses are proportional to fluid element strain rates
and the coefficient of viscosity, J. For incompressible flow with constant density
and viscosity, the Navier Stokes equations become

a 9P, 0o%u  0%u  o?ub_ gu
P "x THEe oy: 9z°H T
0P Oov ov onDO_ dv
PO =5y T HE e Tay: T a22H P at
_o"P+ E52W+o"2w+dzwlj_ ow
P57 "HE "oy T a2 H Pat

Review example 4.5 in the text.

Differential Equation of Angular M omentum

Application of the integral angular-momentum equation to a differential element
and taking moments about the z,y, and x axes respectively yields the interesting
result

Ty STy Ty =Ty Ty=Ty
or

Tij =~ Tji

Thus, the shear stresses are symmetric and there is no differential form of the
angular momentum equation.
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The Differential Equation of Energy

The differential equation of energy is obtained by applying the first law of
thermodynamics to a differential control volume. The most complex element of
the development is the differential form of the control volume work due to both
normal and tangential viscous forces. When this is done, the resulting equation has
the form

p%* +P(MV)=mMkOT)+ @

where @ is the viscous dissipation function and accounts for the frictional
conversion of fluid energy into heat. The term for the total derivative of internal
energy includes both the transient and convective terms seen previously.

Two common assumptions used to simplify the general equation are

l. du=C,dT and 2. C, W, k, p =constants

With these assumptions, the energy equation reduces to

pCVﬂ =kD’T+®
dt

It is noted that the flow-work term was eliminated as a result of the assumption of
constant density, p, for which the continuity equation becomes IV =0 ,thus

eliminating the term P(OV) .

For the special case of a fluid at rest with constant properties, the energy equation
simplifies to the familiar heat conduction equation,

C,— =kO*T
PVt =

We now have the three basic differential equations necessary to obtain complete
flow field solutions of fluid flow problems.
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Boundary Conditions for the Basic Equations

In vector form, the three basic governing equations are written as

Jp

Continuity: é’_t + [I]](pv) =0
Momentum: p% =p9-UP+ T,
Energy: p%: +P(I0V)=1 (kl:l T+ ®

We have three equations and five unknowns: p, V, P, u, and T ; and thus need two
additional equations. These would be the equations of state describing the
variation of density and internal energy as functions of P and T, i.e.

p= p@T) and u=u(P,T)

Two common assumptions providing this information are either:

1. Ideal gas: p=PRT and du= C,dT

2. Incompressible fluid: p=constant and du = CdT
Time and Spatial Boundary Conditions
Time Boundary Conditions: If the flow is unsteady, the variation of each of the
variables (p, V, P, u, and T ) must be specified initially, t = 0, as functions of
spatial coordinates, e.g. X,y,Z.
Spatial Boundary Conditions: The most common spatial boundary conditions
are those specified at a fluid — surface boundary. This typically takes the form

of assuming equilibrium (e.g. no slip condition — no property jump) between the
fluid and the surface at the boundary.
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This takes the form:

Viiwid = Vwall  Ttiwid = Twall

Note that for porous surfaces with mass injection, the wall velocity will be equal to
the injection velocity at the surface.

A second common spatial boundary condition is to specify the values of V, P, and
T at any flow inlet or exit.

Example 4.6

For steady incompressible laminar flow through a long tube, the velocity
distribution is given by

2
=U§—%§ v, =0 vy, =0

where U is the maximum or centerline velocity and R is the tube radius. If the wall
temperature is constant at Tw and the temperature T = T(r) only, find T(r) for this
flow.

For the given conditions, the energy equation reduces to

dT _kd[QdTQ

PCY r Trard art’ Ed—rE

Substituting for v, and realizing the v, = 0, we obtain

kdOdTo.  dv,0_ 4u’pr’

rdrd ard” HHar B R’

Multiply by r/k and integrate to obtain
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d_T _ “U2r3

dr kR +G

Integrate a second time to obtain

B uU
T=- +C1r+
AKR nr+C,

Since the term, In r, approaches infinity as r approaches 0, C; = 0.

Applying the wall boundary condition, T = Ty, at r = R, we obtain for C,

C = _7 4+ HY
v 4K

The final solution then becomes

/(Ui S
TN)=1,+ 4k§ RC

The Stream Function

The necessity to obtain solutions for multiple variables in multiple governing
equations presents an obvious mathematical challenge. However, the stream
function, W, allows the continuity equation to be eliminated and the momentum
equation solved directly for the single variable, W. The use of the stream function
works for cases when the continuity equation can be reduced to only two terms.

For example, for 2-D, incompressible flow, continuity becomes

au 0V ~0
§X ay
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Defining the velocity components to be

oWy oy
u=—  and v=-—
dy Jx

which when substituted into the continuity equation yields

o w4, o0 O §WD_
é’xEdyE E_o"xE

and continuity is automatically satisfied.

Geometric inter pretation of W

It is easily shown that lines of constant W are flow streamlines. Since flow does
not cross a streamline, for any two points in the flow we can write

2 2
:{(le)dA:{dwzwz -y

Thus the volume flow rate between two points in the flow is equal to the difference
in the stream function between the two points.

Steady Plane Compressible Flow

In like manner, for steady, 2-D, compressible flow, the continuity equation is
(p u)+—~ (pv) 0

For this problem, the stream function can be defined such that

pu:a_qJ and pV:—a_LIJ
0 o X
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As before, lines of constant stream function are streamlines for the flow, but the
change in stream function is now related to the local mass flow rate by

I 2
m_, :IPW ﬁﬁ)dA:Id ¥=4, -
1 1

Vorticity and Irrotationality

The concepts of vorticity and irrotationality are very useful in analyzing many
fluid problems. The analysis starts with the concept of angular velocity in a flow
field.

Consider three points, A, B, &
C, initially perpendicular at i
time t, that then move and f
deform to have the position and

orientation at t + dt. Wy g

The lines AB and BC have both
changed length and incurred T
angular rotation da and df8 , R AR R
relative to their initial / v

I

positions.

Fig. 4.10 Angular velocity and strain rate of two
fluid lines deforming in the x-y plane

We define the angular velocity w, about the z axis as the average rate of counter-
clockwise turning of the two lines expressed as

w :_1Ebla_d_[3[
+ =5 Hat  at
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Applying the geometric properties of the deformation shown in Fig. 4.10
and taking the limit as At — 0, we obtain

:_1EHV_$J[

@ 2% dy

In like manner, the angular velocities about the remaining two axes are

_ 1w dvC _1™u_ dwC

=5 Hay 4z O =oHaz dxt

From vector calculus, the angular velocity can be expressed as a vector with

the form

W=1iWx + Wy + kW, =1/2 the curl of the velocity vector, e.g.

1 j k

1 1{2 0 0
=—(curl V)=—

@ 2( ) 20x dy 0z

u \% W

The factor of 2 is eliminated by defining the vorticity, & , as follows:

E=2w =curl V

FrictionlessIrrotational Flows

When a flow is both frictionless and irrotational, the momentum equation reduces

to Euler’s equation given previously by

-OP=p—
Pyg p
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As shown in the text, this can be integrated along the path, ds, of a streamline
through the flow to obtain

20V 2dP V2
I_d +I_+ (V 1)+g(22—21):0
1
For steady, incompressible flow this reduces to

—+—=V?+0gzZ= constant along a streamline

Jo)

which is Bernoulli’s equation for steady incompressible flow as developed in Ch.
II1.

Velocity Potential

The condition of irrotationalty allows the development of a scalar function, @,
similar to the stream function as follows:

If OxV =0 then V=0Ug

where @ = @(x,y,z,t) and is called the velocity potential function. The individual
velocity components are obtained from f with

j220 00, 00

JX oy 0z

Orthogonality

For irrotational and 2-D flow, both W and @ exist and the streamlines and potential
lines are perpendicular throughout the flow regime. Thus for incompressible flow
in the x-y plane we have

U= ov o"qo q A dqo
o"y - ox an YT ox dy

and both relations satisfy Laplace’s equation.
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Review example 4.9 in the text.
Examples of Plane Potential Flow
The following section shows several examples of the use of the stream function

and velocity potential to describe specific flow situations, in particular three plane
potential flows. These flows are shown graphically in Fig. 4.12.
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Fig. 4.12 Three plane potential flows

Uniform Stream in the x Direction

For a uniform velocity flow represented by V = U i, both a velocity potential
and stream function can be defined. The flow field is shown in Fig. 4.12a and @
and W are found as follows:

_99_0¥

_dp_ oY
“dx  dy -

"~ dy EN

u-= and V=

Integrating these expressions and setting the constants of integration equal to
zero we obtain

w=Uy and p=U X
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Line Source or Sink at the Origin

In potential flow, a source is a point in a flow field which provides a point
source of flow. For the case where the z-axis is treated as a line source with
fluid supplied uniformly along its length, a stream function and velocity
potential can be defined in 2-D polar coordinates starting with

__Q _m_10% _dg Lo ¥ _109
Vr_ZITrb_r_ro"Q_o"r Vo~V dr rdo

Integrating and discarding the constants of integration as before, we obtain the
equations for W and @ for a simple, radial flow, line source, or sink:

P=m0O and @=minr

The flow field is shown schematically in Fig. 4.12b for a uniform source flow.

Line Irrotational Vortex

A 2-D line vortex is a purely circulating, steady motion with vg = f(r) only and

vr=0. This flow is shown schematically in Fig. 4.12c. For irrotational flow,
this is referred to as a free vortex and the stream function and velocity potential
function may be found from

1% o9 K __d¥_100

Vi 202738 T o r dr rdf

where K is a constant. Again, integrating, we obtain for ¥ and @

W=-KInr and @=KB6
The strength of the vortex is defined by the constant K.

Review additional examples for combinations of uniform flow, a source, and a
sink in the text.
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