IX. COMPRESSIBLE FLOW

Compressible flow is the study of fluids flowing at speeds comparable to the local
speed of sound. This occurs when fluid speeds are about 30% or more of the local
acoustic velocity. Then, the fluid density no longer remains constant throughout
the flow field. This typically does not occur with fluids but can easily occur in
flowing gases.

Two important and distinctive effects that occur in compressible flows are (1)
choking where the flow is limited by the sonic condition that occurs when the flow
velocity becomes equal to the local acoustic velocity and (2) shock waves that
introduce discontinuities in the fluid properties and are highly irreversible.

Since the density of the fluid is no longer constant in compressible flows, there are
now four dependent variables to be determined throughout the flow field. These
are pressure, temperature, density, and flow velocity. Two new variables,
temperature and density, have been introduced and two additional equations are
required for a complete solution. These are the energy equation and the fluid
equation of state. These must be solved simultaneously with the continuity and
momentum equations to determine all the flow field variables.

Equations of State and | deal Gas Properties:

Two equations of state are used to analyze compressible flows. the ideal gas
equation of state and the isentropic flow equation of state. The first of these
describe gases at low pressure (relative to the gas critical pressure) and high
temperature (relative to the gas critical temperature). The second applies to idedl
gases experiencing isentropic (adiabatic and frictionless) flow.

The ideal gas equation of stateis

P

PoRT

In this equation, R is the gas constant, and P and T are the absolute pressure and
absolute temperature respectively.  Air is the most commonly incurred
compressible flow gas and its gas constant is Ry, = 1716 ft%(s>-°R) = 287 m?/(s*-
K).
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Two additional useful ideal gas properties are the constant volume and constant
pressure specific heats defined as

_du
dT

_dh

Cv P dT

and C

where u isthe specific internal energy and h is the specific enthalpy. These two
properties are treated as constants when analyzing elemental compressible flows.
Commonly used values of the specific heats of air are: C,= 4293 ft¥(s-°R) = 718
m’/(s™-K) and Cy= 6009 ft*/(s*-°R) = 1005 m*/(s*-K). Additional specific heat
relationships are
C:IO
R=C,-C, ad k=—="
C
\Y

The specific heat ratio k for airis 1.4.
When undergoing an isentropic process (constant entropy process), idedl
gases obey the isentropic process equation of state:

P
—¢ = constant
p

Combining this equation of state with theideal gas equation of state and
applying the result to two different locations in a compressible flow field
yields

P, _ L rf/tv u)

R

Note: The above equations may be applied to any ideal gas as it undergoes
an isentropic process.
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Acoustic Veocity and Mach Number

The acoustic velocity (speed of sound) is the speed at which an infinitesimally
small pressure wave (sound wave) propagates through afluid. In general, the
acoustic velocity is given by
2_ 0P
ap

The process experienced by the fluid as a sound wave passes through it is an
Isentropic process. The speed of sound in an ideal gasisthen given by

a=+kRT

a

The Mach number isthe ratio of the fluid velocity and speed of sound,

Mazy
a

This number is the single most important parameter in understanding and
analyzing compressible flows.

Mach Number Example:

Anaircraft flies at aspeed of 400 m/s. What isthisaircraft’s Mach number when
flying at standard sea-level conditions (T = 289 K) and at standard 15,200 m (T =
217 K) atmosphere conditions?

At standard sea-level conditions, @ = /K RT =4/(1.4)(287)(289) =341m/s

and at 15,200 m, @ = 4/(1.4)(287)(217) =295m/s. Theaircraft's Mach
numbers are then

sea-level: Ma=—=——=1.17
a 341

15,200 m: Ma:¥:4—00—136
a 295

Note: Although the aircraft speed did not change, the Mach number did change
because of the change in the local speed of sound.
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|deal Gas Steady | sentropic Flow

When the flow of an ideal gasis such that thereis no heat transfer (i.e., adiabatic)
or irreversible effects (e.qg., friction, etc.), the flow isisentropic. The steady-flow
energy equation applied between two pointsin the flow field becomes

V2 V; 2
h + % =h, +—% = h, = constant
2 2
where hy, called the stagnation enthalpy, remains constant throughout the flow
field. Observe that the stagnation enthalpy is the enthalpy at any point in an
Isentropic flow field where the fluid velocity is zero or very nearly so.

The enthalpy of an ideal gasisgivenby h = C, T over reasonable ranges of
temperature. When thisis substituted into the adiabatic, steady-flow energy
equation, we seethat hg = Cp To = constant and

T,
=1+ k—1Ma
T 2

Thus, the stagnation temperature T, remains constant throughout an isentropic or
adiabatic flow field and the relationship of the local temperature to the field
stagnation temperature only depends upon the local Mach number.

Incorporation of the acoustic velocity equation and the ideal gas equations of
state into the energy equation yields the following useful results for steady
isentropic flow of ideal gases.

EQ:DIdezzgl 32

a UtTt 2

&_DLEMK 1) _§+k |j(/(k 1)
P OTO -

&_DLDl/(k 1) % _Mazdj(k 1)
o, _DTD
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The values of the ideal gas properties when the Mach number is 1 (i.e., sonic
flow) are known asthe critical or sonic properties and are given by

P, 0 gl k=1
P DT [ - 2 U
Po Dl/(k 1) a K — 1D1/(k 1)
0 DT 0 2 O

Both the critical (sonic, Ma = 1) and stagnation values of properties are
useful in compressible flow analyses. For air (k =1.4), these ratios become

* /(k-1) * (k-1
P02 07 (pes 202 077 sang
P k+10 P, Lk+10]

* /2 * 12
"i = Ekiug =0.9129 "i = Ek—ilg =0.9129

In al isentropic flows, al critical (Ma= 1) properties are constant. In
adiabatic, but non-isentropic flows (e.g. adiabatic flows with friction), a*

and T* are constant, but P* and p* may vary.
At sonic conditions

V' =a =(kRrT )" = Dz—klRT SJZ

These vaues will be very useful in problems involving compressible flow
with friction or heat transfer considered later in the chapter.
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I sentropic Flow Example:

Air flowing through an adiabatic, frictionless duct is supplied from a large supply
tank in which P = 500 kPa and T = 400 K. What are the Mach number Ma. the
temperature T, density p, and fluid V at alocation in this duct where the pressureis
430 kPa?

The pressure and temperature in the supply tank are the stagnation pressure and
temperature since the velocity in this tank is practically zero. Then, the Mach

number at thislocation is
k-1)/k
o hpd<V* O

Ma = —1ak ‘15

2 @500 |j).4/1.4 B ]

Ma=
14-144300 B
Ma=0.469
and the temperature is given by
T= T
1+ X Iy
2
400
T= 5
1+.2[0.469
T =383K
Theidea gas equation of stateis used to determine the density,
P 430,000

=—— = = 391kg/m’
P=RT ~ (287)(389) 9

Using the definition of the Mach number and the acoustic velocity, we obtain
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V =May kRT =0.469v1.4[287383 =184 m/s

Solving Compressible Flow Problems

Compressible flow problems come in a variety of forms, but the majority of
them can be solved as follows:

1. Usethe appropriate equations and reference states (i.e., stagnation and sonic
states) to determine the Mach number at all flow field locationsinvolved in
the problem.

2. Determine which conditions are the same throughout the flow field (e.g. the
stagnation properties are the same throughout an isentropic flow field).

3. Apply the appropriate equations and constant conditions to determine the
necessary remaining propertiesin the flow field.

4. Apply additional relations (i.e. equation of state, acoustic velocity, etc.) to
compl ete the solution of the problem.

Most compressible flow equations are expressed in terms of the Mach number.

Y ou can solve these equations explicitly by rearranging the equation, by using
tables, or by programming them with spreadsheet or EES software.

| sentropic Flow with Area Changes

All flows must satisfy the continuity and momentum relations as well asthe
energy and state equations. Application of the continuity and momentum
equations to a differential flow (see textbook for derivation) yields:

dv__ 1 dA
V. Ma’-1A

This result revedls that when Ma < 1 (subsonic flow), Ma - 1 < 0 and velocity
changes are the opposite of area changes. That is, increases in the fluid velocity
require that the area decrease in the direction of the flow. For supersonic flow (Ma
> 1), Ma- 1> 0 and the area must increase in the direction of the flow to cause an
increase in the velocity. Changes in the fluid velocity dV can only be finite in
sonic flows (Ma = 1) when dA = 0. The effect of the geometry upon velocity,
Mach number, and pressureisillustrated in Figure 1 below.
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Nozzle DifTuser
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Ma<l |Ma=1 hm
{Subsonic)| (Supersonic) (Supersonic)| (Subsonic)

Ma=1 Ma=1

{Sonic) {Sonic)

Figurel

Combining the mass flow rate equation M= p AV = constant with the
preceding isentropic flow equations yields

*

H<+1§F _Ma i

V*_lng Zﬂz

V  Mark+1

A 1 O+05(k-1ma2 I
A Mag 05k+1) {

where the sonic state (denoted with *) may or may not occur in the duct.

If the sonic condition does occur in the duct, it will occur at the duct minimum or
maximum area. |f the sonic condition occurs, the flow is said to be choked since

the mass flow rate My = P AV = ,0* AV and is the maximum mass flow rate
the duct can accommodate without a modification of the duct geometry.
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The maximum flow rate is aso given by

/(k 1

R

0.6847P, A
(RT, )

and forair My, =

Example 9.4

Air flowsisentropically through
aduct. At section 1theareais 2 Puassibly

b, Suhsenis

0.05m? and V1 = 180 /s, Py = 1 g

¥i=18mi T -
500 kPa, and T1 = 470°K. & Tt - AL onaess
Compute () To, (b) May, () Po, h=dmk T~ e
and both (d) A” andrh. If the D D
areaAs at section 2 is 0.036m2, E94 A ;".'.'.i'_= o
compute Map and P» if the flow
IS (€) subsonic or (f) supersonic.
Assumek =1.4.

Since the flow is isentropic, the stagnation temperature is given by

2 2
- g704 220
2C, 2[1005

T,=T,+ = 486°K

Thelocal speed of sound is & =+ KRT =+1.4[287[470 = 435m/s

vV, 1
and local machno. Mgy = — = 180 =0.414  (subsonic)
a 435

The local stagnation pressureis

R, =PyL+.2Ma7)"” = 500kPafl + .20.414°] = 563kPa
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The critical, sonic-throat areais determined from

p  @+02MaZ)  (1+02m414%)
A 1728Ma,  1.728[D.414

=1.547

Ao A _0.05m°
1547 1.547

Note that thisis the minimum throat areathat must actually occur in the duct in
order for the flow to become supersonic.

=0.0323m°

The mass flow is given by

* 2
RA  _ 0.6847 563,00010.0323m

M=0.6847-—°"
(RT, )2 (287 (86)"' 2

=33.4kg/s

For parts (e) and (f), we know A2/A* as given below and must therefore solve

Eqgn. 9.45 for the values of May that will yield (e) the subsonic solution or (f)
the supersonic solution. Use 9.28ato obtain the pressure.
A, 0.036

(L+0.2Ma2)
2 = =1115= —
A~ 00323 1.728Ma2 (L+ 2Mma7)

Thisis easily accomplished with the EES or some other computer based
iterative software to yield the following:

(e) subsonic solution - May =0.6758 P, =415 kPa
or

(f) supersonic solution - Map = 1.4001 Pp =177 kPa

Note that for the supersonic solution, the pressure has decreased to alower
value and sonic conditions must have occurred at the throat between 1 and 2.
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Normal Shock Waves

Under the appropriate conditions, very thin, highly irreversible discontinuities can
occur in otherwise isentropic compressible flows. These discontinuities are known
as shock waves which when they are perpendicular to the flow velocity vector are
called normal shock waves.

A normal shock wave in a one-dimensional flow channdl isillustrated in Figure 2.

{(Supersonic)| (Subsonic)

Fixed
Mormal
Shock
Wave

Figure?2

Application of the second law of thermodynamics to the thin, adiabatic normal
shock wave reveals that normal shock waves can only cause a sharp rise in the
gas pressure and must be supersonic upstream and subsonic downstream of the
normal shock. Rarefaction waves that result in a decrease in pressure and
increase in Mach number are impossible according to the second law.

Application of the conservation of mass, momentum, and energy equations along
with the ideal gas equation of state to athin, adiabatic control volume surrounding
anormal shock wave yields the results shown in the following table.

It is noted that in many compressible flow problems with normal shocks, the
location of the shock is unknown. From the equations shown below, thisis

most readily specified by finding the mach no upstream of the shock, Ma;.
However, for most problems this requires an iterative solution of one of the
following equations, depending on the given information.
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Normal Shock Relations

— 2
;=& 1)2Ma1+2 , Ma, >1
2kMa” - (k-1)
P _1+kMa’
P 1+kMa;
Lo Vo _(k+1)Ma;
lol V2 (k_l)Maiz+2
T.=T,
2— —_
_2:[2+(k 1)|\/| ]2kMa1 . (k2 1)
h (k+1°Ma’
P_:,O02 _ O (k +1)|\/| 2 gl(k 1) K+1 d/(k—l)
Pa P 2+(k-DMalD  kMa - (k-1
A2 Ma, (2 + (k —1)Ma? zdm)/[z(k D]
2
A MalHZ"'(k 1)MaQH

When using these equations to relate conditions upstream and downstream of a
normal shock wave, keep the following pointsin mind:

1. Upstream Mach numbers are always supersonic while downstream Mach
numbers are subsonic.

2. Stagnation pressures and densities decrease as one moves downstream
across anormal shock wave while the stagnation temperature remains
constant (a consequence of the adiabatic flow condition).

3. Pressuresincrease greatly while temperature and density increase
moderately across a shock wave in the downstream direction.

4. The critical/sonic throat area changes across a normal shock wavein the

downstream directionand A, > A, .

5. Shock waves are very irreversible causing the specific entropy downstream
of the shock wave to be greater than the specific entropy upstream of the
shock wave.
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Moving normal shock waves such as those caused by explosions, spacecraft
reentering the atmosphere, and others can be analyzed as stationary normal
shock waves by using aframe of reference that moves at the speed of the
shock wave in the direction of the shock wave.

Example: Normal Shock in a Conver ging-Diverging Nozzle

Air is supplied to the converging-diverging
nozzle shown here from alarge tank where
P=2MPaand T =400 K. A normal shock
wave in the diverging section of this nozzle
formsat apoint P, = P, =2 MPa where

the upstream Mach number is1.4. The
ratio of the nozzle exit areato the throat

areais 1.6. Determine (a) the Mach
number downstream of the shock wave, (b) the Mach number at the nozzle
exit, (c) the pressure at the nozzle exit, and (d) the temperature at the nozzle
exit.

Thisflow isisentropic from the supply tank (1) to just upstream of the
normal shock (2) and also from just downstream of the shock (3) to the exit
(4). Stagnation temperatures do not change in isentropic flows or across
shock waves, T, =T, =T; =T, =400K. Stagnation pressures do not

changein isentropic flows, P, =P, =2MPa and P, =P, , but
stagnation pressures change across shocks, P, > P, .

Based upon the Mach number at 2 and the isentropic relations,

i:ﬁ:'a?: 1 (1+0.2Ma§)3:1115
A A A Ma 1728 '

The normal shock relations can be used to work across the shock itself. The
answer to (a) isthen

O(k-DMa® +2 O 0 (04)@ay +2 O

%D vl -(k-0H ~ Baayaay —0ad ~O%
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Continuing to work across the shock,

N . (k+1)Ma22 ﬁ/(k—l)lj K+1 I__J]/(k—l)
04 03 02%+(k_1)|\/|322% %kMag _(k_l)%

B 2 D’%.S ] 5
(2.4)(L.4) 2.4 = -192MPa

+(04)1.4° 5 (L4)L4Y - 040

P

04 = PRz = 2
A; _Mag 2+ (k-1)Maj el 07402+ .4(1.4Y (4

= = = =1.044
A, Ma, 2+ (k-1)MaZ[] 14 B+ 40740

Now, we know A4/A;, and the flow is again isentropic between states 3 and 4.
Writing an expression for the area ratio between the exit and the throat, we have

A16=BAANA LA Gy o115
ATTAAAA A
A

Solving for —- we obtain i =1.374
A A

Using a previously developed equation for choked, isentropic flow we can write

2 ﬁk+1)/[2(k—1)]

A g7,- L A+05K-1)Ma
A MaH 05(k+1)
or
1+0.2Ma’Y)
1.374 = 1 ( 4)

Ma, 1728

The solution of this equation gives answer (b) Ma, = 0.483.

Now that the Mach number at 4 is known, we can proceed to apply the
Isentropic relations to obtain answers (c) and (d).
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P 1.92 MPa

P, = o4 == =1.637MPa
Y prosk-nma] " i+ 0.2(0.483)7]"

T, 400K

T, = = = 382K
* 1+05(k-1DMa; 1+0.2(0.483)°

Note: Observe how the sonic area downstream from the shock isnot the
same as upstream of theshock. Also, observe the use of thearearatios
to deter minethe Mach number at the nozzle exit.

The following steps can be used to solve most one-dimensional compressible flow
problems.

1. Clearly identify the flow conditions: e.g., isentropic flow, constant
stagnation temperature, constant stagnation pressure, etc.

2. Use the flow condition relationships, tables, or software to determine the
Mach number at locations of interest in the flow field.

3. Once the Mach number is known at the locations of interest, one can
proceed to use the flow relations, tables, or software to determine other flow
properties such as fluid velocity, pressure, and temperature. This may
require the reduction of property ratios to the product of several ratios, as
was done with the arearatio in the above example to obtain the answer.

Review Example 9.6 in the text.

Oper ation of Conver ging-Diver ging Nozzles

A converging-diverging nozzle like that shown in Figure 3 can operate in several
different modes depending upon the ratio of the discharge and supply pressure
Py/Ps. These modes of operation areillustrated on the pressure ratio — axial
position diagram of Figure 3.

Mode (a) The flow is subsonic throughout the nozzle, supply, and discharge
chambers. Without friction, this flow is also isentropic and the
Isentropic flow equations may be used throughout the nozzle.
Sonic conditions are not reached at the throat.
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Discharge
P varies

10 i -
{a)
: (b)

P*IR _

—(d)

J—

. L

Figure3

Mode (b) The flow is still subsonic and isentropic throughout the nozzle and

Mode (c)

chambers. The Mach number at the nozzle throat is now unity.
At the throat, the flow is sonic, the throat is choked, and the mass
flow rate through the nozzle has reached its upper limit for the

given geometry and Py, To. Further reductions in the discharge
tank pressure will not increase the mass flow rate any further.

A shock wave has now formed in the diverging section of the
nozzle. The flow is subsonic before the throat, same as mode (b),
the throat is choked, same as mode (b), and the flow is supersonic
and accelerating between the throat and just upstream of the shock.
The flow is isentropic between the supply tank and just upstream of
the shock. The flow downstream of the shock is subsonic and
decelerating. The flow is aso isentropic downstream of the shock
to the discharge tank. The flow is not isentropic across the shock.
Isentropic flow methods can be applied upstream and downstream
of the shock while normal shock methods are used to relate
conditions upstream to those downstream of the shock.
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Mode (d)

Mode (e)

Mode (f)

Mode (g)

Example 9.9

The normal shock is now located at the plane of the nozzle exit.
Isentropic flow now exists throughout the nozzle up to the shock.
The flow at the nozzle exit is supersonic upstream of the shock and
subsonic downstream of the shock. The flow adjusts to flow
conditions in the discharge tank, not the nozzle. Isentropic flow
methods can be applied throughout the nozzle.

A series of two-dimensional shocks are established in the discharge
tank downstream of the nozzle. These shocks serve to decelerate
the flow. The flow is isentropic throughout the nozzle, same as
mode (d).

The pressure in the discharge tank equals the pressure predicted by
the supersonic solution of the nozzle isentropic flow equations. The
pressure ratio is known as the supersonic design pressure ratio.
Flow is isentropic everywhere in the nozzle, same as mode (d) and
(e), and in the discharge tank.

A series of two-dimensional shocks are established in the discharge
tank downstream of the nozzle. These shocks serve to decelerate
the flow. The flow is isentropic throughout the nozzle, same as
modes (d), (e), and (f).

A converging-diverging nozzle has the Possible
following values: R . N e

A¢=.002m°, Ag = .008 M7, e |

P, = 1000 kPa, T, = 500°K. =

Find: Pe and mass flow rate for (a) o e

supersonic design conditions (b) P, = g e
300 kPa, and () P, = 900 kPa. k = 1.4 |

(@) For supersonic design conditions, the flow will be isentropic throughout
with supersonic flow from the throat to the exit. Stagnation pressure and
temperature will be constant. Conditions at the throat will be sonic and the
flow will be choked.
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3
A_A_ A, fr2mg)
A A .002 | A M, 1.728

Since

Using either EES software or an appropriate iteration procedure, we obtain
M. =2.94 Thisisthe supersonic solution to Eqn. 9.45.

Eqgn. 9.34 is used to obtain the design exit pressure.

R __ 1000
(+2m2)”  (+.2m294%)"

P, = = 29.3kPa

The flow rate at design conditionsis obtained from Eqgn. 9.46b.

e = 0.6847P,A _ 0.6847 [1E60.002m?
= (RT, M2 (287 (50O 2

=3.61kg/s

(b) Nozzle backpressureis B, = 300kPa. Since Pb = 300 kPa> 29.3

kPa, referring to Fig. 3, we must determine whether this corresponds to
condition a,b,c,d, or e.

First determine the condition for choked flow, but subsonic throughout the
nozzle (case b in Fig. 3). Again using Eqn’s 9.45 and 9.34, solve for the

subsonic value of Me and P that yields an arearatio of 4.

+2M
i;=4= 1 ) M, =0.1465 and P, = 985kPa
A M, 1728

Since 985 kPa > Pb > 29.3 kPa, we have anormal shock somewherein the
nozzle. Since the shock is upstream of the nozzle exit, the exit must be subsonic,
the throat must be sonic and choked and the following conditions exit:

P.=R, =300kPa and my,=3.61kg/s
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Referring to Fig. 3, once the back pressure has decreased to a value where the
throat is choked (condition B), all flow conditions for back pressures less than
condition B are also choked and the flow rate remains constant.

() Nozzle backpressureis B, = 900KPa. Sincethis pressureisvery closeto

condition B (P =985 kPa), we must have an embedded normal shock
represented by condition Cin Fig. 3.

Asin Part b, since we know we have an embedded shock very close to condition
C, we again must have sonic, choked conditions at the throat and subsonic
conditions from the shock to the exit. Thus, we again have

P,=R, =300kPa and rmy,=361kg/s
We have not, however, determined the location of the embedded shock.

While the procedure is somewhat cumbersome, it will be presented here for the
conditions of part c. The basic process involves assuming the nozzle area, Ay, just
upstream of the embedded shock, and then proceeding based on this assumed
value across the embedded shock to the end of the nozzle, in order to match the
given back pressure and exit area. While the solution involves an iterativetrial
and error process, it is easily developed using a computer.

(1) Given: Upstream sonic area: A1* =0.002 m’
Upstream stagnation pressure: Po1 = 1000 kpa
Upstream stagnation temperature: Top =500°K = To’
Nozzle exit areg; Ae=0.008 m2
Nozzle back pressure: Pe = 900 kpa

(2) Assume: Mach no. upstream of shock: Mx = 1.541

(3) Caculate: Static pressure upstream of shock: Egn. 9.34

_ P, _ 1000kPa

= 3E =
(i+.2Ma2)”  (1+.20.547%

P 35 = 256.6kpa

(4) Calculate: Mach no. downstream of shock; Egn. 9.57
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O(k -DMa2 + 2 d’z 0 (04) 15412 +2 O

M =0.6871
Y7 BikMaz - (D T R(14)as41y - 047
(5) Cdculate: Static pressure downstream of shock:  Eqgn. 9.56
1+ k Ma2 1+1.41.541°
R, = P———— =256.6 > = 668.2kPa
1+kMa; 1+1.410.6871

(6) Calculate: Stagnation pressure downstream of shock: Egn. 9.34

P,y =R {+.2Ma?)” = 256.6(L+ 2(D.68712) ~ = 916.3pa

(7) Calculate: Stagnation to static pressureratio at exit:
Ry /P =916.3/900 =1.0181

(8) Cadculate:the exit Mach no.: Eqgn. 9.34 (solve for Me)
DUB 5
Ma, = E5 A oI —1% [5((1 0181)"3 —1] = 0.1603
(9) Caculate: Sonic area downstream of shock: Eqgn. 9.59
= A 2 |:|
+(k - 1) Ma; 5
LA 5 EFEA/A
= .00252 411541 B =.002183m?

g2+.406871

(10) Caculate: Nozzle exit area: Eqgn. 9.45
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. Q+.2[Ma§)

3(1+ 2011608)

=.00218 =0.008 m°
1.728[0.1603

&

I

&
=
\l
%
<
&

If this value of exit area does not match the given exit area, repeat the process with
anew assumes value of May .

Several key pointsimportant to this analysis are summarized as follows:

» Theflow between the nozzle throat and just upstream of the normal shock is
Isentropic with the following conditions. A* = const., To = const., Po = const.,
and thus isentropic, compressible flow equations can be used in this area.

» Theflow from just downstream of the normal shock to the nozzle exit isalso
isentropic with the following conditions. A* = const., To = const., Po = const.,
and thus isentropic, compressible flow equations can be used in this area.

* While To = constant across a normal shock, A* and Po change.

Note: Due to conservation of mass, it is aso true that across anormal shock

me=m, and fromEqn.o.46b (RA") =(R,A"),

This can aso be used to determine conditions across a normal shock.
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Adiabatic, Constant Duct Area Compressible Flow with Friction

When compressible fluids flow through insulated, constant-area ducts, they are
subject to Moody-like pipe-friction which can be described by an average Darcy-
Weisbach friction factor f. Application of the conservation of mass, momentum,
and energy principles as well as the ideal gas equation of state yields the following
set of working equations.

L _1-Ma®  k+1 ) (k+1)Ma”

D kMa® 2k 2+(k-1)Ma?
P 10 (k+1) O

P"~ Ma 2+ (k-)Ma’_

p V' 1 2+(k-DMa2d”

pF vV Map k+1 ¢
T_a_ (k+))

T a° 2+(k-1)Ma’

P, D 1 @+ (k 1)M 5 dk+1)/[2(k—1)]
P p Mapg k+1 [

where the asterisk state is the sonic state at which the flow Mach number is one.
L* is the length of duct required to develop from Ma to sonic conditions. This
sonic state is constant throughout the duct and may be used to relate conditions at
one location in the duct to those at another location. The length of the duct AL
between two given values of Mais given by

Of L

“Hp

f AL DfLD
D

]
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Compressible Flow with Friction Example:

Air enters a 0.01-m-diameter duct (f = 0.05) with Ma = 0.05. The pressure and

temperature at the duct inlet are 1.5 MPa and 400 K. What are the (a) Mach
number, (b) pressure, and (c) temperature in the duct 50 m from the entrance?

At the duct entrance, with f = 0.05, D = 0.01 m, and Ma = 0.05, we obtain

ofLg _ QA-ma’ Lkl (k+1)Ma® O

dp H° Eklvla % 2+ (k-)Ma’H

Of L0 _01-005 24, (24)0.05 O

= + n =280
1.4(0057° 28 2+(0.4005H

Then, at the duct exit we obtain

Of L' O _ ogp  (005)50

%?LQZEDH “Toor D

We can now write for the duct exit that

A-Ma*> k+1, (k+D)Ma* O

*D:BO: + In
do JkMa® " 2k 2+(k-D)Ma’H

_1-Mal 24In 2.4Ma.
14Ma2 28 2+0.4Ma;

or

The solution of the second of these equations gives answer (a) Ma, = 0.145.
Writing the following expression for pressure ratios yields for (b),
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10 (k+1) O Ma1D2+(k Yma? o
a, 2+(k-1)Ma’H 0 W K+1

R =Le)

2.4 0’ 0.0502+(0.4)0.05 O

5 =0.516
=@ )0145Hz+(o4)o145 H @ 1 H 24 H
Application of the temperature ratios yields answer (c),
* * _ 2 2
T, :TlT—lT—%l% :4002+(k 1)Ma12 _ 2+(O.4)O.052 ~ 399
TTT, 2+(k—1)Ma2 2+(0.4)0.145

It is noted that in both of the previous expressions, B /B, and T, /T;
egual 1 as the sonic reference conditions are constant between two points.

This example demonstrates how Mach number changes in adiabatic frictional flow
in a duct. When the flow at the inlet to the duct is subsonic, the Mach number
increases as the duct gets longer. When the inlet flow is supersonic, the Mach
number decreases as the duct gets longer. A plot of the specific entropy of the
fluid as a function of the duct Mach number (and therefore length) is presented in
Figure 4 for both subsonic and supersonic flow.

Supersonic

Mach Number

Sonic

=y
=]

Subsonic

Entropy Srax

Figure4

These results clearly illustrate that the Mach number in the duct approaches unity
as the length of the duct is increased. Once the sonic condition exists at the duct
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exit, the flow becomes choked. This figure also demonstrates that the flow can
never proceed from subsonic to supersonic (or supersonic to subsonic) flow, asthis
would result in aviolation of the second law of thermodynamics.

Other compressible flows in constant area ducts such as isothermal flow with
friction and frictionless flow with heat addition may be analyzed in a similar
manner using the equations appropriate to each flow. Many of these flows
also demonstrate choking behavior.

Frictionless Duct Flow with Heat Transfer

We now add consideration of the effect of heat transfer to our compressible
flow discussion. We will consider the case shown in Fig. 9.16.

Fig. 9.16 Elemental control Goratel

volume for frictionless flow in

aconstant area duct with heat —— Sad
transfer. Thelength of the

duct would only be determined T T
If the heat transfer per unit area

or per unit length were known

for the problem.

For this flow the basic conservation equations are written as

Continuity: o Vi = p,V, =G = constant
X momentum: P-P,=G (V2 —Vl)
Energy: Q= r'n(hz + ;VZZ -+ ;Vlz)
_Q_, _
or g M hp2 —hys

Thus, heat transfer results in a change in the stagnation enthalpy for the
flow.
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Applications of the ideal gas equation and definition of Mach no. to the previous
equations yield the following expressions for flow propertiesin terms of Mach
number.

T, _ (k+DMa2f2+ (k-1)ma?]

TE i (1+ kMaZ)2
T _ (k+1°Ma?
T (1+ k Maz)2

P k+1

P° 1+kMa?
vV _p _(k+1)Ma?
V' p 1+kMa?

k1 2+ (k-1ma2l "

P
P’ 1+kMa’gd k+1 O

Example 9.14

A fuel-air mixture, approximated as air with k=1.4, enters a duct combustion
chamber at V1 = 75 m/s, P; = 150 kPa, and T1 = 300°K. The heat addition from
the combustion is 900 kJ/kg of mixture. Compute (a) the exit properties Vo, Py,
and T and (b) the total heat addition which would have caused a sonic exit flow.

Vs 75°
By definition: T, =T, +— =300+ = 303’K
’ 2Cp 21005
From the energy equation we have
Too =T, +— = 30PK + 900,000J7kg _ 1 1g90k
N o 1005J/(kgK )
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The Mach number is now obtained from

a, =+ KRT =+/1.4[287300 = 347m/s
Ma, =2 =" _0216
a, 347

From Egn. 9.78a we obtain the stagnation temperature at sonic conditions.

T, _ (k+DMa2[2+ (k-1)ma?]

To (L+kMma?)
T, 24 [0.216%[2 +0.4[0.216°| 0165 o T 151K
Ty (i+140.2167) | °

At the end of the combustion process, we now can calculate

T,, 1199

T 1521

=0.788 which correspondsto Ma, = 0.573

With the Mach numbers at points 1 and 2 and Table B4 or the previous equation,
we can tabulate the desired property ratios.

Section Ma VIV* P/P* T/T*
1 0.216 0.1051 2.2528 0.2368
2 0.573 0.5398 1.6442 0.8876

The exit properties are now obtained from

VIV m0.5398

V, =V, —%— = 750 ——— = 385"
V,/V s 0.1051 s
R/P 1.6442

R=PR 2/P_ _150kPat¥2 —100kpa
R/P 2.2528
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L /T* = 300°KM =1124°K
T,IT 0.2368

TL,=T

The heat addition necessary to drive the flow to sonic conditionsis determined
from the difference in the stagnation temperatures at the inlet and at sonic
conditions.

G = Cp(To —To1)=10053/(kg K 1521~ 303|°K =1.22E6J/kg

Note that sinceit is not possible from the flow to proceed past sonic conditions this
Is also the maximum possible heat transfer.

Oblique Shock Waves

Bodies moving through a compressible fluid at speeds exceeding the speed of
sound create a shock system shaped like a cone. The half-angle of this shock cone
isgiven by

l’l e s n_l i
Ma
This angle is known as the Mach angle. The interior of the shock cone is called
the zone of action. Inside the zone of action, it is possible to hear any sounds
produced by the moving body. Outside the Mach cone, in what is known as the
zone of silence, sounds produced by the moving body cannot be heard.

An oblique shock wave at angle 3 with respect to the approaching compressible
fluid whose Mach number is supersonic is shown in Figure 5. Observe that the
streamlines (paralel to the velocity vector) have been turned by the deflection
angle @ by passing through the oblique shock wave.

=

[
a Oblique ;
2 Shock Wave ;
Y] o’ E
E u Vg . s y |
i B Y o el
| P
; ’f - 1'“::1.2 Vu

-
| !
| |

Figure5
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This flow is readily analyzed by considering the normal velocity components
V,=V,snfB and V,=V,sin(B-6) and the tangentiad components
V, and V,. Application of the momentum principle in the tangential
direction (along which there are no pressure changes) verifies that

Vi =V th = Vtz
We define the normal Mach numbers as

MaM:%:MalsinB and Ma, :%:Mazsin(ﬁ—e)

The simultaneous solution of the conservation of mass, momentum, and energy
equations in the normal direction along with the ideal gas equation of state are the

same as those of the normal shock wave with Ma; replaced with Map1 and May

replaced with May». In this way, al the results developed in the norma shock
wave section can be applied to two-dimensional obligue shock waves.

Oblique Shock Example:

A two-dimensional shock wave is created at the leading edge of an aircraft flying

at Ma = 1.6 through air at 70 kPa, 300 K. If this oblique shock forms a55° angle

with respect to the approaching air, what is (a) the Mach number of the flow after
the oblique shock (this is not the normal Mach number) and (b) the streamline
deflection angle 87?

The velocity of the fluid upstream of the oblique shock waveis

V, =Ma, a, = Ma, \kRT =1.6+/(1.4)(287)(300) = 556m/ s
whose components are
V, =V, sin3=556sin55=455m/s
V, =V, =V, cosf3 =556c0s55=319m/s
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The upstream normal Mach number is then

Ma, =Masnf =16sin55=1.311
and the downstream normal Mach number is

_ O(k-1)Ma?, + 2 ﬁ 0 (0.4)(L310)° +2 O
*" Bkmal - (k-5 R@4)@311) - 044

Ma, =0.780

and the downstream temperature is
2kMa’, - (k—1)%
(k +1)2 Man21 O

2 —
2(1.4)1.2311 20.4%: 250K
(24)°1.31°

T, :Tla(k—l)Maﬁl +2]

T, = 300@(0.4)1.3112 +2]

Now, the downstream normal velocity is

V., =Ma,, a, = Ma,, 4k RT, =0.780+/(1.4)(287)(359) = 296m/s

and the downstream fluid velocity is

V, =[V2 + V2 =+/296” +319” = 435m/ s

and the downstream Mach number is

_V, 435
“a, +(14)(287)(359)

According to the geometry of Figure 5,

=115

Ma, =
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1296

G:ﬁ—tan‘lﬁ:%—tan =12.1
V, 9

t2
Other downstream properties can be calculated in the same way as the

downstream temperature by using the normal Mach numbers in the normal
shock relations.

Prand|-M eyer Expansion Waves

The preceding section demonstrated that when the streamlines of a supersonic flow
are turned into the direction of the flow an oblique compression shock wave is
formed. Similarly, when the streamlines of a supersonic flow are turned away
from the direction of flow as illustrated in Figure 6, an expansion wave system is
established. Unlike shock waves (either normal or oblique) which form a strong
discontinuity to change the flow conditions, expansion waves are a system of
infinitessmally weak waves distributed in such a manner as required to make the
required changes in the flow conditions.

Mach Waves

Figure6

The Mach waves that accomplish the turning of supersonic flows form an angle
with respect to the local flow velocity equal to the Mach angle = sin""(1/ Ma)

and are isentropic. Application of the governing conservation eguations and
equation of state to an infinitesimal turning of the supersonic flow yields
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B ~ ~ M—Dﬂz . qk _1)(Ma2 _ 1)&/2
H(Ma)—oo(Ma)—Ek_1D tan 5 1 5

—tan™ (M a’ - 1)1/2

where w(Ma) is the Prandl-Meyer expansion function. The overall change in the
flow angle as a supersonic flow undergoes a Prandl-Meyer expansion is then

A6 = w(Ma,)- w(Ma,)
where 1 refersto the upstream condition and 2 refers to the downstream condition.

The flow through a Prandl-Meyer expansion fan isisentropic flow. The isentropic
flow equations can then be used to relate the fluid properties upstream and
downstream of the expansion fan.

Example:

Air at 80 kPa, 300 K with a Mach number of 1.5 turns the sharp corner of an airfaoil
as shown here. Determine the angles of the initial and fina Mach waves, and the
downstream pressure and temperature of this flow.

‘Di = EI-'D l{F’a
T, =300 K Cy

|
Ma(= 1.5 ;
[ |
1
|

|
|
|
E
|
|

170° E

Theinitia angle between the flow velocity vector and the Prandtl-Meyer fan is the
Mach angle.

a, = snt— =gn?L =418
Ma, 5
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The upstream Prandtl-Meyer function is

1142 dk-1)(Ma? -1)d"”
ofva)= (k4 RN

—tan™*(Ma,? - 1)1/2

241" (L5° —1)51’2
2.4 0

~tan*(L5°-1)"

w(Ma,)=11.90°
The downstream Prandtl-Meyer function is then
w(Ma,)=w(Ma ) - A6=11.9° - 10° =1.90°
Solving the Prandtl-Meyer function gives the downstream Mach number
Ma, =1.13. The downstream Mach angleisthen p, = 62.2°. According to
the geometry of the above figure,
a,=u,-N0=622" -10° =52.2°

Since Tp and Py remain constant, the isentropic flow relations yield

1+—k_1Ma12 ’
T 2(1.
Tetlaloq 2 7 _gpolt0205) _ gy,
T T ‘1eKlyg  1+02(113)
2
k-1 2|jk/(k—l)

P 2(1.
%:Hﬂi:a% 2.5 = so§+02(15)5 =132MPa

DD s +02(1.13)

Students ar e encour aged to examine the flow visualization photographsin Ch 9.
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