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IX.  COMPRESSIBLE FLOW 
 

Compressible flow is the study of fluids flowing at speeds comparable to the local 
speed of sound.  This occurs when fluid speeds are about 30% or more of the local 
acoustic velocity.  Then, the fluid density no longer remains constant throughout 
the flow field.  This typically does not occur with fluids but can easily occur in 
flowing gases. 
 
Two important and distinctive effects that occur in compressible flows are (1) 
choking where the flow is limited by the sonic condition that occurs when the flow 
velocity becomes equal to the local acoustic velocity and (2) shock waves that 
introduce discontinuities in the fluid properties and are highly irreversible. 
 
Since the density of the fluid is no longer constant in compressible flows, there are 
now four dependent variables to be determined throughout the flow field.  These 
are pressure, temperature, density, and flow velocity.  Two new variables, 
temperature and density, have been introduced and two additional equations are 
required for a complete solution.  These are the energy equation and the fluid 
equation of state.  These must be solved simultaneously with the continuity and 
momentum equations to determine all the flow field variables. 
 
Equations of State and Ideal Gas Properties: 
 
Two equations of state are used to analyze compressible flows: the ideal gas 
equation of state and the isentropic flow equation of state.  The first of these 
describe gases at low pressure (relative to the gas critical pressure) and high 
temperature (relative to the gas critical temperature).  The second applies to ideal 
gases experiencing isentropic (adiabatic and frictionless) flow. 
 
The ideal gas equation of state is 
 

ρ = P
R T

 

 
In this equation, R is the gas constant, and P and T are the absolute pressure and 
absolute temperature respectively.  Air is the most commonly incurred 
compressible flow gas and its gas constant is Rair = 1716 ft2/(s2-oR) = 287 m2/(s2-
K). 
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Two additional useful ideal gas properties are the constant volume and constant 
pressure specific heats defined as 
 

Cv =
d u
d T

and Cp =
d h
d T

 

 
where u is the specific internal energy and h is the specific enthalpy.  These two 
properties are treated as constants when analyzing elemental compressible flows.  
Commonly used values of the specific heats of air are: Cv= 4293 ft2/(s2-oR) = 718 
m2/(s2-K) and Cp= 6009 ft2/(s2-oR) = 1005 m2/(s2-K).  Additional specific heat 
relationships are 
 

R = Cp − Cv and k =
Cp

Cv
 

 
The specific heat ratio k  for air is 1.4. 
 
When undergoing an isentropic process (constant entropy process), ideal 
gases obey the isentropic process equation of state: 
 

P
ρk = constant  

 
Combining this equation of state with the ideal gas equation of state and 
applying the result to two different locations in a compressible flow field 
yields 
 

P2

P1
= T2

T1

 
  

 
  

k / k−1( )

=
ρ2

ρ1

 
  

 
  

k

 

 
Note: The above equations may be applied to any ideal gas as it undergoes 

an isentropic process. 
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Acoustic Velocity and Mach Number 
 
The acoustic velocity (speed of sound) is the speed at which an infinitesimally 
small pressure wave (sound wave) propagates through a fluid.  In general, the 
acoustic velocity is given by 

a2 =
∂ P
∂ ρ

 

 
The process experienced by the fluid as a sound wave passes through it is an 
isentropic process.  The speed of sound in an ideal gas is then given by 
 

a = k RT  
 
The Mach number is the ratio of the fluid velocity and speed of sound, 
 

Ma =
V
a

 

 
This number is the single most important parameter in understanding and 
analyzing compressible flows. 
 
Mach Number Example: 
 
An aircraft flies at a speed of 400 m/s.  What is this aircraft’s Mach number when 
flying at standard sea-level conditions (T = 289 K) and at standard 15,200 m (T = 
217 K) atmosphere conditions?  
 

At standard sea-level conditions, a = k RT = 1.4( ) 287( ) 289( ) = 341m / s  
and at 15,200 m, a = 1.4( ) 287( ) 217( ) = 295m / s .  The aircraft’s Mach 
numbers are then 
 

sea − level : Ma = V
a

= 400
341

=1.17

15, 200 m : Ma = V
a

= 400
295

=1.36
 

 
Note: Although the aircraft speed did not change, the Mach number did change 

because of the change in the local speed of sound. 
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Ideal Gas Steady Isentropic Flow 
When the flow of an ideal gas is such that there is no heat transfer (i.e., adiabatic) 
or irreversible effects (e.g., friction, etc.), the flow is isentropic.  The steady-flow 
energy equation applied between two points in the flow field becomes 

h1 +
V1

2

2
= h2 +

V2
2

2
= ho = constant  

where h0, called the stagnation enthalpy, remains constant throughout the flow 
field.  Observe that the stagnation enthalpy is the enthalpy at any point in an 
isentropic flow field where the fluid velocity is zero or very nearly so. 
 
The enthalpy of an ideal gas is given by h = Cp T over reasonable ranges of 
temperature.  When this is substituted into the adiabatic, steady-flow energy 
equation, we see that  ho = Cp To = constant and  

To

T
=1+

k −1
2

Ma2
 

Thus, the stagnation temperature To remains constant throughout an isentropic or 
adiabatic flow field and the relationship of the local temperature to the field 
stagnation temperature only depends upon the local Mach number. 
 
Incorporation of the acoustic velocity equation and the ideal gas equations of 
state into the energy equation yields the following useful results for steady 
isentropic flow of ideal gases. 

To
T

=1+
k −1

2
Ma2

ao
a

=
To
T

 
 

 
 

1/2

= 1+
k −1

2
Ma2 

 
 
 

1/2

Po

P
=

To

T
 
 

 
 

k / k−1( )
= 1+

k −1
2

Ma2 
 

 
 

k / k−1( )

ρo

ρ
= To

T
 
 

 
 

1/ k−1( )
= 1+ k −1

2
Ma2 

 
 
 

1/ k−1( )
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The values of the ideal gas properties when the Mach number is 1 (i.e., sonic 
flow) are known as the critical or sonic properties and are given by 
 

To

T* =1+
k −1

2
ao

a* =
To

T*
 
 

 
 

1/2

= 1+
k −1

2
 
 

 
 

1/2

Po

P* =
To

T*
 
 

 
 

k / k−1( )
= 1+

k −1
2

 
 

 
 

k / k−1( )

ρo

ρ* = To

T*
 
 

 
 

1/ k−1( )
= 1+ k −1

2
 
 

 
 

1/ k−1( )

 

 
Both the critical (sonic, Ma = 1) and stagnation values of properties are 
useful in compressible flow analyses.  For air (k =1.4), these ratios become 
 

P*

Po
=

2
k +1

 
 

 
 

k / k−1( )
= 0.5283  

ρ*

ρo
=

2
k +1

 
 

 
 

1/ k−1( )
= 0.6339  

 
a*

ao
=

2
k +1

 
 

 
 

1/2

= 0.9129  
a*

ao
=

2
k +1

 
 

 
 

1/2

= 0.9129  

 
In all isentropic flows, all critical (Ma = 1) properties are constant.  In 
adiabatic, but non-isentropic flows (e.g. adiabatic flows with friction), a* 
and T* are constant, but P* and ρ* may vary. 
At sonic conditions 
 

V * = a* = k RT *( )1/2
= 2 k

k +1
RTo

 
 

 
 

1/2

 

These values will be very useful in problems involving compressible flow 
with friction or heat transfer considered later in the chapter. 
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Isentropic Flow Example: 
 
Air flowing through an adiabatic, frictionless duct is supplied from a large supply 
tank in which P = 500 kPa and T = 400 K.  What are the Mach number Ma. the 
temperature T, density ρ, and fluid V at a location in this duct where the pressure is 
430 kPa? 
 
The pressure and temperature in the supply tank are the stagnation pressure and 
temperature since the velocity in this tank is practically zero.  Then, the Mach 
number at this location is 
 

Ma =
2

k −1
P
Po

 
  

 
  

k−1( )/ k

−1
 

 
 
 

 

 
 
 

Ma =
2

1.4 −1
500
430

 
 

 
 

0.4 /1.4

−1
 

 
 

 

 
 

Ma = 0.469

 

 
and the temperature is given by 

T = To

1+ k −1
2

Ma2

T =
400

1+ .2 ⋅0.4692

T = 383o K

 

 
The ideal gas equation of state is used to determine the density, 
 

ρ = P
RT

= 430,000
287( ) 383( ) = 3.91kg /m3

 

 
 
Using the definition of the Mach number and the acoustic velocity, we obtain 
 



 

 IX-7 

V = Ma k RT = 0.469 1.4 ⋅ 287 ⋅ 383 =184 m /s 
 
 
Solving Compressible Flow Problems 
 
Compressible flow problems come in a variety of forms, but the majority of 
them can be solved as follows: 
 

1. Use the appropriate equations and reference states (i.e., stagnation and sonic 
states) to determine the Mach number at all flow field locations involved in 
the problem. 

2. Determine which conditions are the same throughout the flow field (e.g. the 
stagnation properties are the same throughout an isentropic flow field). 

3. Apply the appropriate equations and constant conditions to determine the 
necessary remaining properties in the flow field. 

4. Apply additional relations (i.e. equation of state, acoustic velocity, etc.) to 
complete the solution of the problem. 

 
Most compressible flow equations are expressed in terms of the Mach number.  
You can solve these equations explicitly by rearranging the equation, by using 
tables, or by programming them with spreadsheet or EES software. 
 
 
Isentropic Flow with Area Changes 
 
All flows must satisfy the continuity and momentum relations as well as the 
energy and state equations.  Application of the continuity and momentum 
equations to a differential flow (see textbook for derivation) yields: 
 

d V
V

= 1
Ma2 −1

d A
A

 

 
This result reveals that when Ma < 1 (subsonic flow), Ma - 1 < 0 and velocity 
changes are the opposite of area changes.  That is, increases in the fluid velocity 
require that the area decrease in the direction of the flow.  For supersonic flow (Ma 
> 1), Ma - 1 > 0 and the area must increase in the direction of the flow to cause an 
increase in the velocity.  Changes in the fluid velocity  dV  can only be finite in 
sonic flows (Ma = 1) when dA = 0.  The effect of the geometry upon velocity, 
Mach number, and pressure is illustrated in Figure 1 below. 
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Figure 1 

 
Combining the mass flow rate equation constant== VAm ρ!  with the 
preceding isentropic flow equations yields 
 
 

ρ*

ρ
=

2
k +1

1+
k −1

2
Ma2 

 
 
 

 
  

 
  

1/ k−1( )
 

 

V *

V
=

1
Ma

2
k +1

1+
k −1

2
Ma2 

 
 
 

 
  

 
  

1/2

 

 

A
A* =

1
Ma

1+ 0.5 k −1( )Ma2

0.5 k +1( )
 

 
 

 

 
 

k +1( )/ 2 k−1( )[ ]
 

 
where the sonic state (denoted with *)  may or may not occur in the duct.   
 
If the sonic condition does occur in the duct, it will occur at the duct minimum or 
maximum area.  If the sonic condition occurs, the flow is said to be choked since 
the mass flow rate ***

max VAVAm ρρ ==!  and is the maximum mass flow rate 
the duct can accommodate without a modification of the duct geometry. 
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The maximum flow rate is also given by 
 

( )







+







+
==

−

o

k

o TR
k

kA
k

VAm
1

2
1

2 *
1/1

***
max ρρ!  

 

and for air   
( ) 2/1

*

max
6847.0

o

o

TR
APm =!  

 
Example 9.4 

Air flows isentropically through 
a duct.  At section 1 the area is 
0.05 m2 and V1 = 180 m/s, P1 = 
500 kPa, and T1 = 470˚K.  
Compute (a) To, (b) Ma1, (c) Po, 
and both (d) A* andm! .   If the 
area A2 at section 2 is 0.036m2, 
compute Ma2 and P2 if the flow 
is (e) subsonic or (f) supersonic. 
Assume k = 1.4. 

 

 
Since the flow is isentropic, the stagnation temperature is given by 

To = T1 +
V1

2

2Cp
= 470 +

1802

2 ⋅1005
= 486o K  

The local speed of sound is  a1 = k RT = 1.4 ⋅ 287 ⋅ 470 = 435m /s  

 and local mach no. Ma1 =
V1

a1
=

180
435

= 0.414         (subsonic) 

The local stagnation pressure is 

Po = P1 1+ .2 Ma1
2( )3.5

= 500kPa 1+ .2 ⋅0.4142[ ]3.5
= 563kPa  
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The critical, sonic-throat area is determined from 

A1

A* =
1+ 0.2Ma1

2( )3

1.728 Ma1
=

1+ 0.2⋅ 0.4142( )3

1.728⋅ 0.414
=1.547  

A* =
A1

1.547
=

0.05 m2

1.547
= 0.0323m2

 

Note that this is the minimum throat area that must actually occur in the duct in 
order for the flow to become supersonic. 

The mass flow is given by 

  
( ) ( )

skgm
TR

APm
o

o /4.33
486287

0323.0000,5636847.06847.0 2/1

2

2/1

*
=

⋅
⋅==!  

For parts (e) and (f), we know A2/A* as given below and must therefore solve 
Eqn. 9.45 for the values of Ma2 that will yield (e) the subsonic solution or (f) 
the supersonic solution.  Use 9.28a to obtain the pressure. 

A2

A* =
0.036
0.0323

=1.115 =
1+ 0.2Ma2

2( )3

1.728Ma2
   and   P =

Po

1+ .2 Ma1
2( )3.5  

This is easily accomplished with the EES or some other computer based 
iterative software to yield the following: 

(e)  subsonic solution   -  Ma2  = 0.6758   P2 = 415 kPa 

or 

(f)  supersonic solution  - Ma2  =  1.4001   P2 = 177 kPa 

Note that for the supersonic solution, the pressure has decreased to a lower 
value and sonic conditions must have occurred at the throat between 1 and 2. 
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Normal Shock Waves 
 
Under the appropriate conditions, very thin, highly irreversible discontinuities can 
occur in otherwise isentropic compressible flows.  These discontinuities are known 
as shock waves which when they are perpendicular to the flow velocity vector are 
called normal shock waves.   
 
A normal shock wave in a one-dimensional flow channel is illustrated in Figure 2. 
 
 

 
Figure 2 

 
Application of the second law of thermodynamics to the thin, adiabatic normal 
shock wave reveals that normal shock waves can only cause a sharp rise in the 
gas pressure and must be supersonic upstream and subsonic downstream of the 
normal shock.  Rarefaction waves that result in a decrease in pressure and 
increase in Mach number are impossible according to the second law. 
 
Application of the conservation of mass, momentum, and energy equations along 
with the ideal gas equation of state to a thin, adiabatic control volume surrounding 
a normal shock wave yields the results shown in the following table. 
 
It is noted that in many compressible flow problems with normal shocks, the 
location of the shock is unknown.  From the equations shown below, this is 
most readily specified by finding the mach no upstream of the shock, Ma1.  
However, for most problems this requires an iterative solution of one of the 
following equations, depending on the given information.   
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 Normal Shock Relations 

Ma2
2 = k −1( )Ma1

2 + 2
2k Ma1

2 − k −1( )
, Ma1 >1

P2

P1

= 1 + k Ma1
2

1 + k Ma2
2

ρ2

ρ1

= V1

V2

= k +1( )Ma1
2

k −1( )Ma1
2 + 2

To1 = To 2

T2

T1

= 2 + k −1( )Ma1
2[ ] 2k Ma1

2 − k −1( )
k +1( )2 Ma1

2

Po2

Po1

= ρo2

ρo1

= k +1( )Ma1
2

2 + k −1( )Ma1
2

 

 
 

 

 
 

k / k−1( )
k +1

2k Ma1
2 − k −1( )

 

 
 

 

 
 

1/ k−1( )

A2
*

A1
* = Ma2

Ma1

2 + k −1( )Ma1
2

2 + k −1( )Ma2
2

 

 
 

 

 
 

k+1( )/ 2 k−1( )[ ]

 

 
When using these equations to relate conditions upstream and downstream of a 
normal shock wave, keep the following points in mind: 

1. Upstream Mach numbers are always supersonic while downstream Mach 
numbers are subsonic. 

2. Stagnation pressures and densities decrease as one moves downstream 
across a normal shock wave while the stagnation temperature remains 
constant (a consequence of the adiabatic flow condition). 

3. Pressures increase greatly while temperature and density increase 
moderately across a shock wave in the downstream direction. 

4. The critical/sonic throat area changes across a normal shock wave in the 
downstream direction and A2

* > A1
*

. 
5. Shock waves are very irreversible causing the specific entropy downstream 

of the shock wave to be greater than the specific entropy upstream of the 
shock wave. 



 

 IX-13 

Moving normal shock waves such as those caused by explosions, spacecraft 
reentering the atmosphere, and others can be analyzed as stationary normal 
shock waves by using a frame of reference that moves at the speed of the 
shock wave in the direction of the shock wave. 
 
 
Example:  Normal Shock in a Converging-Diverging Nozzle 
 
Air is supplied to the converging-diverging 
nozzle shown here from a large tank where 
P = 2 MPa and T = 400 K.  A normal shock 
wave in the diverging section of this nozzle 
forms at a point Po1 = Po2 = 2 MPa  where 
the upstream Mach number is 1.4.  The 
ratio of the nozzle exit area to the throat 
area is 1.6.  Determine (a) the Mach 
number downstream of the shock wave, (b) the Mach number at the nozzle 
exit, (c) the pressure at the nozzle exit, and (d) the temperature at the nozzle 
exit.  
 
This flow is isentropic from the supply tank (1) to just upstream of the 
normal shock (2) and also from just downstream of the shock (3) to the exit 
(4).  Stagnation temperatures do not change in isentropic flows or across 
shock waves, To1 = To 2 = To3 = To4 = 400 K .  Stagnation pressures do not 
change in isentropic flows, Po1 = Po2 = 2 MPa  and Po3 = Po 4 , but 
stagnation pressures change across shocks, Po2 > Po3 . 
 
Based upon the Mach number at 2 and the isentropic relations, 
 

A2

At

=
A3

At

= A2

At
* = 1

Ma2

1+ 0.2 Ma2
2( )3

1.728
=1.115 

 
The normal shock relations can be used to work across the shock itself.  The 
answer to (a) is then 
 

Ma3 = k −1( )Ma2
2 + 2

2k Ma2
2 − k −1( )

 

 
 

 

 
 

1/ 2

= 0.4( ) 1.4( )2 + 2
2 1.4( ) 1.4( )2 − 0.4

 
 
 

 
 
 

1/ 2

= 0.740 
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Continuing to work across the shock, 
 

Po4 = Po3 = Po2
k + 1( )Ma2

2

2 + k −1( )Ma2
2

 

 
 

 

 
 

k / k−1( )
k + 1

2 k Ma2
2 − k −1( )

 

 
 

 

 
 

1/ k−1( )

 

Po4 = Po3 = 2
2.4( ) 1.4( )2

2 + 0.4( )1.42
 

 
 

 

 
 

3.5
2.4

2 1.4( ) 1.4( )2 − 0.4
 

 
 

 

 
 

2.5

=1.92 MPa  

A3
*

A2
* =

Ma3

Ma2

2 + k −1( )Ma2
2

2 + k −1( )Ma3
2

 

 
 

 

 
 

k+1( ) / 2 k−1( )[ ]
=

0.74
1.4

2 + .4 1.4( )2

2 + .4 0.74( )2
 

 
 

 

 
 

2.4 /.8

=1.044  

 
Now, we know A4/At, and the flow is again isentropic between states 3 and 4.  
Writing an expression for the area ratio between the exit and the throat, we have 
 

A4

At

= 1.6 = A4

A4
*

A4
*

A3
*

A3
*

A2
*

A2
*

At

= A4

A4
* 1( ) 1.044( ) 1.115( ) 

 

Solving for 
A4

A4
*  we obtain 

A4

A4
* =1.374  

 
Using a previously developed equation for choked, isentropic flow we can write 

 

A4

A4
* =1.374 = 1

Ma
1 + 0.5 k −1( )Ma2

0.5 k +1( )
 

 
 

 

 
 

k+1( )/ 2 k−1( )[ ]

 

or 

1.374 = 1
Ma4

1+ 0.2Ma4
2( )3

1.728
 

 
The solution of this equation gives answer (b) Ma4 = 0.483.   
 
Now that the Mach number at 4 is known, we can proceed to apply the 
isentropic relations to obtain answers (c) and (d). 
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P4 = Po4

1 + 0.5 k −1( )Ma4
2[ ]k / k−1( ) = 1.92 MPa

1 + 0.2 0.483( )2[ ]3.5 =1.637MPa  

 

T4 = To4

1 + 0.5 k −1( )Ma4
2 = 400 K

1 + 0.2 0.483( )2 = 382 K  

 
 
Note: Observe how the sonic area downstream from the shock is not the 
same as upstream of the shock.   Also, observe the use of the area ratios 
to determine the Mach number at the nozzle exit. 
 
The following steps can be used to solve most one-dimensional compressible flow 
problems. 
 

1. Clearly identify the flow conditions: e.g., isentropic flow, constant 
stagnation temperature, constant stagnation pressure, etc. 

2. Use the flow condition relationships, tables, or software to determine the 
Mach number at locations of interest in the flow field. 

3. Once the Mach number is known at the locations of interest, one can 
proceed to use the flow relations, tables, or software to determine other flow 
properties such as fluid velocity, pressure, and temperature.  This may 
require the reduction of property ratios to the product of several ratios, as 
was done with the area ratio in the above example to obtain the answer. 

 
Review Example 9.6 in the text. 
 
Operation of Converging-Diverging Nozzles 
 
A converging-diverging nozzle like that shown in Figure 3 can operate in several 
different modes depending upon the ratio of the discharge and supply pressure 
Pd/Ps.  These modes of operation are illustrated on the pressure ratio – axial 
position diagram of Figure 3. 
 

Mode (a) The flow is subsonic throughout the nozzle, supply, and discharge 
chambers.  Without friction, this flow is also isentropic and the 
isentropic flow equations may be used throughout the nozzle. 
Sonic conditions are not reached at the throat. 
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Figure 3 

 
Mode (b) The flow is still subsonic and isentropic throughout the nozzle and 

chambers.  The Mach number at the nozzle throat is now unity.  
At the throat, the flow is sonic, the throat is choked, and the mass 
flow rate through the nozzle has reached its upper limit for the 
given geometry and Po, To.  Further reductions in the discharge 
tank pressure will not increase the mass flow rate any further.  

 
Mode (c) A shock wave has now formed in the diverging section of the 

nozzle.  The flow is subsonic before the throat, same as mode (b), 
the throat is choked, same as mode (b), and the flow is supersonic 
and accelerating between the throat and just upstream of the shock.  
The flow is isentropic between the supply tank and just upstream of 
the shock.  The flow downstream of the shock is subsonic and 
decelerating.  The flow is also isentropic downstream of the shock 
to the discharge tank.  The flow is not isentropic across the shock.  
Isentropic flow methods can be applied upstream and downstream 
of the shock while normal shock methods are used to relate 
conditions upstream to those downstream of the shock.  
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Mode (d) The normal shock is now located at the plane of the nozzle exit.  
Isentropic flow now exists throughout the nozzle up to the shock.  
The flow at the nozzle exit is supersonic upstream of the shock and 
subsonic downstream of the shock.  The flow adjusts to flow 
conditions in the discharge tank, not the nozzle.  Isentropic flow 
methods can be applied throughout the nozzle.  

 
Mode (e) A series of two-dimensional shocks are established in the discharge 

tank downstream of the nozzle.  These shocks serve to decelerate 
the flow.  The flow is isentropic throughout the nozzle, same as 
mode (d). 

 
Mode (f) The pressure in the discharge tank equals the pressure predicted by 

the supersonic solution of the nozzle isentropic flow equations.  The 
pressure ratio is known as the supersonic design pressure ratio. 
Flow is isentropic everywhere in the nozzle, same as mode (d) and 
(e), and in the discharge tank.   

 
Mode (g) A series of two-dimensional shocks are established in the discharge 

tank downstream of the nozzle.  These shocks serve to decelerate 
the flow.  The flow is isentropic throughout the nozzle, same as 
modes (d), (e), and (f). 

 
 

Example 9.9 
A converging-diverging nozzle has the 
following values: 
At = .002 m2, Ae = .008 m2, 
 Po = 1000 kPa, To = 500˚K.   
Find:  Pe and mass flow rate for (a) 
supersonic design conditions (b) Pb = 
300 kPa, and (c) Pb = 900 kPa. k = 1.4  

 
(a)  For supersonic design conditions, the flow will be isentropic throughout 
with supersonic flow from the throat to the exit.  Stagnation pressure and 
temperature will be constant.  Conditions at the throat will be sonic and the 
flow will be choked. 
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Since 
Ae

At
=

Ae

A* =
.008
.002

= 4  Eqn 9.45 yields 
Ae

A* = 4 =
1

Me

1+ .2 Me
2( )3

1.728
 

 
Using either EES software or an appropriate iteration procedure, we obtain 
 
 Me = 2.94        This is the supersonic solution to Eqn. 9.45. 
 
Eqn. 9.34 is used to obtain the design exit pressure. 
 

Pe =
Po

1+ .2 ⋅ Me
2( )3.5 =

1000

1+ .2 ⋅2.942( )3.5 = 29.3kPa  

 
The flow rate at design conditions is obtained from Eqn. 9.46b. 
 

( ) ( )
skgmE

TR
APm

o

to
des /61.3

500287
002.0616847.06847.0

2/1

2

2/1 =
⋅

⋅⋅==!  

 
(b) Nozzle backpressure is Pb = 300 kPa .   Since Pb = 300 kPa > 29.3 

kPa, referring to Fig. 3, we must determine whether this corresponds to 
condition a,b,c,d, or e. 

 
First determine the condition for choked flow, but subsonic throughout the 
nozzle (case b in Fig. 3).  Again using Eqn’s 9.45 and 9.34, solve for the 
subsonic value of Me and Pe that yields an area ratio of 4. 
 

Ae

A* = 4 = 1
Me

1+ .2 Me
2( )3

1.728
 Me = 0.1465  and   Pe = 985 kPa  

 
Since  985 kPa > Pb > 29.3 kPa,  we have a normal shock somewhere in the 
nozzle.  Since the shock is upstream of the nozzle exit, the exit must be subsonic, 
the throat must be sonic and choked and the following conditions exit: 
 

 Pe = Pb = 300kPa  and skgmdes /61.3=!  
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Referring to Fig. 3, once the back pressure has decreased to a value where the 
throat is choked (condition B), all flow conditions for back pressures less than 
condition B are also choked and the flow rate remains constant. 
 
(c) Nozzle backpressure is Pb = 900kPa .  Since this pressure is very close to 

condition B (P = 985 kPa), we must have an embedded normal shock 
represented by condition C in Fig. 3. 

 
As in Part b, since we know we have an embedded shock very close to condition 
C, we again must have sonic, choked conditions at the throat and subsonic 
conditions from the shock to the exit.  Thus, we again have 
 
 Pe = Pb = 300kPa  and skgmdes /61.3=!  
 
We have not, however, determined the location of the embedded shock.   
 
While the procedure is somewhat cumbersome, it will be presented here for the 
conditions of part c.  The basic process involves assuming the nozzle area, Ax, just 
upstream of the embedded shock, and then proceeding based on this assumed 
value across the embedded shock to the end of the nozzle, in order to match the 
given back pressure and exit area.  While the solution involves an iterative trial 
and error process, it is easily developed using a computer. 
 
(1)  Given:   Upstream sonic area:   A1* = 0.002 m2 
 Upstream stagnation pressure:   Po1 = 1000 kpa 
 Upstream stagnation temperature: To1 = 500˚K = To2 
 Nozzle exit area; Ae = 0.008 m2 
 Nozzle back pressure: Pe = 900 kpa 

(2)  Assume: Mach no. upstream of shock: Mx = 1.541 

(3)  Calculate: Static pressure upstream of shock: Eqn. 9.34 

Px =
Po,x

1+ .2Max
2( )3.5 =

1000kPa

1+ .2⋅1.5412( )3.5 = 256.6kpa  

(4) Calculate: Mach no. downstream of shock; Eqn. 9.57 



 

 IX-20 

May =
k −1( )Max

2 + 2
2k Max

2 − k −1( )
 

 
 

 

 
 
1/2

=
0.4( ) 1.541( )2 + 2

2 1.4( ) 1.541( )2 − 0.4
 

 
 

 

 
 
1/2

= 0.6871 

(5)  Calculate: Static pressure downstream of shock: Eqn. 9.56 

Py = Px
1+ k Max

2

1+ k May
2 = 256.6

1+1.4 ⋅1.5412

1+1.4 ⋅0.68712 = 668.2kPa  

(6)  Calculate: Stagnation pressure downstream of shock:   Eqn. 9.34 

Po,y = Py 1+ .2May
2( )3.5

= 256.6 1+ .2⋅ 0.68712( )3.5
= 916.3kpa  

(7)  Calculate: Stagnation to static pressure ratio at exit :   

Po,y /Pe = 916.3/900 =1.0181 

(8)  Calculate: the exit Mach no.: Eqn. 9.34 (solve for Me) 

Mae = 5
Po,y

Pe

 
  

 
  

1/3.5

−1
 

 
 

 

 
 

 

 
 
 

 

 
 
 

.5

= 5 1.0181( )1/3.5 −1( )[ ].5
= 0.1603 

(9)  Calculate: Sonic area downstream of shock: Eqn. 9.59 

Ay
* = Ax

* 2 + k −1( )Max
2

2 + k −1( )May
2

 

 
 
 

 

 
 
 

.5⋅ k +1( )/ k−1( )

 

= .002
2 + .4 ⋅1.5412

2 + .4 ⋅ .6871
 

 
 

 

 
 

.5⋅2.4 /.4

= .002183m2
 

(10)  Calculate: Nozzle exit area: Eqn. 9.45 
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Ae = Ay
* 1+ .2 ⋅ Mae

2( )
1.728 Mae

= .002183
1+ .2 ⋅ .16032( )
1.728⋅0.1603

= 0.008 m2
 

 

If this value of exit area does not match the given exit area, repeat the process with 
a new assumes value of Max . 

Several key points important to this analysis are summarized as follows: 

• The flow between the nozzle throat and just upstream of the normal shock is 
isentropic with the following conditions:  A* = const., To = const., Po = const., 
and thus isentropic, compressible flow equations can be used in this area. 

• The flow from just downstream of the normal shock to the nozzle exit is also 
isentropic with the following conditions:  A* = const., To = const., Po = const., 
and thus isentropic, compressible flow equations can be used in this area.  

• While To = constant across a normal shock, A* and Po change. 

 

Note:  Due to conservation of mass, it is also true that across a normal shock 

 

( ) ( )yoxoyx APAPbEqnfromandmm **46.9. == !!  

This can also be used to determine conditions across a normal shock.  
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Adiabatic, Constant Duct Area Compressible Flow with Friction 
 

When compressible fluids flow through insulated, constant-area ducts, they are 
subject to Moody-like pipe-friction which can be described by an average Darcy-
Weisbach friction factor f .  Application of the conservation of mass, momentum, 
and energy principles as well as the ideal gas equation of state yields the following 
set of working equations. 
 

f L*

D
= 1− Ma2

k Ma2 + k +1
2k

ln k +1( )Ma2

2 + k −1( )Ma2

P
P* =

1
Ma

k +1( )
2 + k −1( )Ma2

 

 
 

 

 
 

1/2

ρ
ρ* =

V *

V
=

1
Ma

2 + k −1( )Ma2

k +1
 

 
 

 

 
 

1/2

T
T * = a

a*2 = k +1( )
2 + k −1( )Ma2

Po

Po
* = ρo

ρo
* = 1

Ma
2 + k −1( )Ma2

k +1
 

 
 

 

 
 

k+1( )/ 2 k−1( )[ ]

 
 

where the asterisk state is the sonic state at which the flow Mach number is one.  
L* is the length of duct required to develop from Ma to sonic conditions.  This 
sonic state is constant throughout the duct and may be used to relate conditions at 
one location in the duct to those at another location.  The length of the duct ∆L  
between two given values of Ma is given by 
 

f ∆L
D

= f L*

D
 
  

 
  1

− f L*

D
 
  

 
  2
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Compressible Flow with Friction Example: 
 
Air enters a 0.01-m-diameter duct ( f = 0.05) with Ma = 0.05.  The pressure and 
temperature at the duct inlet are 1.5 MPa and 400 K.  What are the (a) Mach 
number, (b) pressure, and (c) temperature in the duct 50 m from the entrance? 
 
At the duct entrance, with f = 0.05, D = 0.01 m, and Ma = 0.05, we obtain 
 

f L*

D
 
  

 
  1

= 1− Ma2

k Ma2 + k +1
2k

ln k +1( )Ma2

2 + k −1( )Ma2

 
 
 

 
 
 

1

 

 
f L*

D
 
  

 
  1

= 1− 0.052

1.4 0.05( )2 + 2.4
2.8

ln 2.4( )0.052

2 + 0.4( )0.052

 
 
 

 
 
 

1

= 280  

 
Then, at the duct exit we obtain 
 

f L*

D
 
  

 
  2

=
f L*

D
 
  

 
  1

−
f ∆L
D

= 280 −
0.05( )50

0.01
= 30 

 
We can now write for the duct exit that 
 

f L*

D
 
  

 
  2

= 30 =
1− Ma2

k Ma2 +
k +1
2k

ln k +1( )Ma2

2 + k −1( )Ma2

 
 
 

 
 
 

2

 

or 

30 = 1− Ma2
2

1.4 Ma2
2 + 2.4

2.8
ln 2.4 Ma2

2

2 + 0.4 Ma2
2  

 
 
The solution of the second of these equations gives answer (a) Ma2 = 0.145.  
Writing the following expression for pressure ratios yields for (b), 
 

P2 = P1
P2

P2
*

P2
*

P1
*

P1
*

P1
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P2 = 1.5( ) 1
Ma2

k +1( )
2 + k −1( )Ma2

2

 

 
 

 

 
 

1/ 2

1( ) Ma1

1
2 + k −1( )Ma1

2

k +1
 
  

 
  

1/ 2

 

 

P2 = 1.5( ) 1
0.145

2.4
2+ 0.4( )0.1452

 
  

 
  

1/ 2

1( ) 0.05
1

2 + 0.4( )0.052

2.4
 
  

 
  

1/ 2

= 0.516 

 
Application of the temperature ratios yields answer (c), 
 

T2 = T1
T1

*

T1

T2
*

T1
*

T2

T2
* = 400 2 + k −1( )Ma1

2

2 + k −1( )Ma2
2 = 400 2 + 0.4( )0.052

2 + 0.4( )0.1452 = 399 

 
It is noted that in both of the previous expressions, P2

* /P1
* and T2

* /T1
*  

equal 1 as the sonic reference conditions are constant between two points.   
 
This example demonstrates how Mach number changes in adiabatic frictional flow 
in a duct. When the flow at the inlet to the duct is subsonic, the Mach number 
increases as the duct gets longer.  When the inlet flow is supersonic, the Mach 
number decreases as the duct gets longer.  A plot of the specific entropy of the 
fluid as a function of the duct Mach number (and therefore length) is presented in 
Figure 4 for both subsonic and supersonic flow. 
 

 
Figure 4 

 
These results clearly illustrate that the Mach number in the duct approaches unity 
as the length of the duct is increased.  Once the sonic condition exists at the duct 
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exit, the flow becomes choked.  This figure also demonstrates that the flow can 
never proceed from subsonic to supersonic (or supersonic to subsonic) flow, as this 
would result in a violation of the second law of thermodynamics. 
 
Other compressible flows in constant area ducts such as isothermal flow with 
friction and frictionless flow with heat addition may be analyzed in a similar 
manner using the equations appropriate to each flow.  Many of these flows 
also demonstrate choking behavior. 
 
 
Frictionless Duct Flow with Heat Transfer 
 
We now add consideration of the effect of heat transfer to our compressible 
flow discussion.  We will consider the case shown in Fig. 9.16. 
 
Fig. 9.16  Elemental control 
volume for frictionless flow in 
a constant area duct with heat 
transfer.  The length of the 
duct would only be determined 
if the heat transfer per unit area 
or per unit length were known 
for the problem. 

 
 
For this flow the basic conservation equations are written as 
 

Continuity: ρ1V1 = ρ2 V2 = G = constant  

x momentum: P1 − P2 = G V2 −V1( ) 

Energy: ( )2
12

1
1

2
22

1
2 VhVhmQ +−+= !!  

  or 1,2, oo hh
m
Qq −==
!
!

 

 
Thus, heat transfer results in a change in the stagnation enthalpy for the 
flow. 
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Applications of the ideal gas equation and definition of Mach no. to the previous 
equations yield the following expressions for flow properties in terms of Mach 
number. 
 

To

To
* =

k +1( )Ma2 2 + k −1( )Ma2[ ]
1+ k Ma2( )2  

T
T * =

k +1( )2 Ma2

1+ k Ma2( )2  

P
P* =

k +1
1+ k Ma2  

V
V * =

ρ*

ρ
=

k +1( )Ma2

1+ k Ma2  

Po

Po
* =

k +1
1+ k Ma2

2 + k −1( )Ma2

k +1
 

 
 

 

 
 

k / k−1( )

 

 
Example 9.14   
A fuel-air mixture, approximated as air with k=1.4, enters a duct combustion 
chamber at V1 = 75 m/s, P1 = 150 kPa, and T1 = 300˚K.  The heat addition from 
the combustion is 900 kJ/kg of mixture.  Compute (a) the exit properties V2, P2, 
and T2 and (b) the total heat addition which would have caused a sonic exit flow. 

By definition:  To,1 = T1 +
V1

2

2Cp
= 300 +

752

2 ⋅1005
= 303o K  

From the energy equation we have 

To,2 = To,1 +
q

Cp
= 303o K +

900,000 J /kg
1005 J / kg⋅ K( ) =1199o K  
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The Mach number is now obtained from 
 
 a1 = k RT = 1.4 ⋅ 287 ⋅ 300 = 347m /s 

 Ma1 =
V1

a1
=

75
347

= 0.216 

From Eqn. 9.78a we obtain the stagnation temperature at sonic conditions. 

To

To
* =

k +1( )Ma2 2 + k −1( )Ma2[ ]
1+ k Ma2( )2  

To

To
* =

2.4 ⋅ 0.2162 2 + 0.4 ⋅ 0.2162[ ]
1+1.4 ⋅0.2162( )2 = 0.1992    or  To

* =1521o K  

At the end of the combustion process, we now can calculate 

 
To,2

To
* =

1199
1521

= 0.788    which corresponds to  Ma2 = 0.573 

With the Mach numbers at points 1 and 2 and Table B4 or the previous equation, 
we can tabulate the desired property ratios. 

Section Ma V/V* P/P* T/T* 
1 0.216 0.1051 2.2528 0.2368 
2 0.573 0.5398 1.6442 0.8876 

 
The exit properties are now obtained from 
 

 V2 = V1
V2 /V *

V1 /V * = 75 m
s

0.5398
0.1051

= 385 m
s  

 P2 = P1
P2 /P*

P1 /P* =150 kPa
1.6442
2.2528

=109kPa  
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 T2 = T1
T2 /T *

T1 /T * = 300o K
0.8876
0.2368

=1124o K  

 
The heat addition necessary to drive the flow to sonic conditions is determined 
from the difference in the stagnation temperatures at the inlet and at sonic 
conditions. 
 

qmax = Cp To
* −To,1( )=1005 J / kg ⋅ K( )1521− 303[ ]o K =1.22E6J /kg 

 
Note that since it is not possible from the flow to proceed past sonic conditions this 
is also the maximum possible heat transfer. 
 
 
Oblique Shock Waves 
 
Bodies moving through a compressible fluid at speeds exceeding the speed of 
sound create a shock system shaped like a cone.  The half-angle of this shock cone 
is given by 
 

µ = sin−1 1
Ma

 
 

 This angle is known as the Mach angle.  The interior of the shock cone is called 
the zone of action.  Inside the zone of action, it is possible to hear any sounds 
produced by the moving body.  Outside the Mach cone, in what is known as the 
zone of silence, sounds produced by the moving body cannot be heard. 
 

An oblique shock wave at angle β  with respect to the approaching compressible 
fluid whose Mach number is supersonic is shown in Figure 5.  Observe that the 
streamlines (parallel to the velocity vector) have been turned by the deflection 
angle θ  by passing through the oblique shock wave. 
 

 
Figure 5 
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This flow is readily analyzed by considering the normal velocity components 
Vn1 = V1 sin β and Vn2 = V2 sin β −θ( ) and the tangential components 
Vt1 and Vt2 .  Application of the momentum principle in the tangential 
direction (along which there are no pressure changes) verifies that 
 

1 2=t tV V Vt1 = Vt 2  
 
We define the normal Mach numbers as 
 

Man1 = Vn1

a1

= Ma1 sin β and Man2 = Vn 2

a2

= Ma2 sin β −θ( ) 

 
The simultaneous solution of the conservation of mass, momentum, and energy 
equations in the normal direction along with the ideal gas equation of state are the 
same as those of the normal shock wave with Ma1 replaced with Man1 and Ma2 
replaced with Man2.  In this way, all the results developed in the normal shock 
wave section can be applied to two-dimensional oblique shock waves. 
 
Oblique Shock Example: 
 
A two-dimensional shock wave is created at the leading edge of an aircraft flying 
at Ma = 1.6 through air at 70 kPa, 300 K.  If this oblique shock forms a 55o angle 
with respect to the approaching air, what is (a) the Mach number of the flow after 
the oblique shock (this is not the normal Mach number) and (b) the streamline 
deflection angle θ ? 
 
The velocity of the fluid upstream of the oblique shock wave is 
 

V1 = Ma1 a1 = Ma1 k R T = 1.6 1.4( ) 287( ) 300( ) = 556m / s  
 

whose components are 
 

Vn1 = V1 sin β = 556sin 55 = 455m / s  

Vt1 = Vt2 = V1 cos β = 556cos55 = 319m / s  
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The upstream normal Mach number is then  
 

Man1 = Ma1 sin β =1.6 sin 55 = 1.311 
 
and the downstream normal Mach number is 
 

Man2 = k −1( )Man1
2 + 2

2k Man1
2 − k −1( )

 

 
 

 

 
 

1/ 2

= 0.4( ) 1.311( )2 + 2
2 1.4( ) 1.311( )2 − 0.4

 
 
 

 
 
 

1 /2

= 0.780  

 
and the downstream temperature is 
 

T2 = T1 k −1( )Man1
2 + 2[ ]2 k Man1

2 − k −1( )
k +1( )2 Man1

2

 
 
 

 
 
 

 

 

T2 = 300 0.4( )1.3112 + 2[ ] 2 1.4( )1.3112 − 0.4
2.4( )21.3112

 
 
 

 
 
 

= 359 K  

 
Now, the downstream normal velocity is  
 

Vn2 = Man2 a2 = Man2 k RT2 = 0.780 1.4( ) 287( ) 359( ) = 296m / s  
 
 and the downstream fluid velocity is 
 

V2 = Vn2
2 + Vt 2

2 = 2962 + 3192 = 435m / s 
 
and the downstream Mach number is 
 

Ma2 = V2

a2

= 435
1.4( ) 287( ) 359( )

=1.15 

 
According to the geometry of Figure 5, 
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θ = β − tan−1 Vn 2

Vt 2

= 55 − tan−1 296
319

=12.1 

 
Other downstream properties can be calculated in the same way as the 
downstream temperature by using the normal Mach numbers in the normal 
shock relations. 
 
 
Prandl-Meyer Expansion Waves 
 
The preceding section demonstrated that when the streamlines of a supersonic flow 
are turned into the direction of the flow an oblique compression shock wave is 
formed.  Similarly, when the streamlines of a supersonic flow are turned away 
from the direction of flow as illustrated in Figure 6, an expansion wave system is 
established.  Unlike shock waves (either normal or oblique) which form a strong 
discontinuity to change the flow conditions, expansion waves are a system of 
infinitesimally weak waves distributed in such a manner as required to make the 
required changes in the flow conditions. 
 

 
Figure 6 

 
 
The Mach waves that accomplish the turning of supersonic flows form an angle 
with respect to the local flow velocity equal to the Mach angle µ = sin−1 1 / Ma( )  
and are isentropic.  Application of the governing conservation equations and 
equation of state to an infinitesimal turning of the supersonic flow yields 
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−θ Ma( ) = ω Ma( ) = k +1
k −1

 
 

 
 

1/ 2

tan−1 k −1( ) Ma2 −1( )
k +1

 

 
 
 

 

 
 
 

1 /2

− tan−1 Ma2 −1( )1 /2

 
where ω Ma( ) is the Prandl-Meyer expansion function.  The overall change in the 
flow angle as a supersonic flow undergoes a Prandl-Meyer expansion is then 
 

∆θ = ω Ma1( )− ω Ma2( ) 
 
where 1 refers to the upstream condition and 2 refers to the downstream condition. 
 
The flow through a Prandl-Meyer expansion fan is isentropic flow.  The isentropic 
flow equations can then be used to relate the fluid properties upstream and 
downstream of the expansion fan. 
 
 
Example: 
 
Air at 80 kPa, 300 K with a Mach number of 1.5 turns the sharp corner of an airfoil 
as shown here.  Determine the angles of the initial and final Mach waves, and the 
downstream pressure and temperature of this flow. 
 

 
 
 
The initial angle between the flow velocity vector and the Prandtl-Meyer fan is the 
Mach angle. 
 

α 1 = sin−1 1
Ma1

= sin−1 1
1.5

= 41.80  
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The upstream Prandtl-Meyer function is 
 

ω Ma1( )= k +1
k −1

 
 

 
 

1/ 2

tan−1 k −1( ) Ma1
2 −1( )

k +1
 

 
 

 

 
 

1/ 2

− tan−1 Ma1
2 −1( )1/ 2

 

 

ω Ma1( )= 2.4
0.4

 
 

 
 

1/ 2

tan−1 0.4( ) 1.52 −1( )
2.4

 

 
 
 

 

 
 
 

1/ 2

− tan−1 1.52 −1( )1/ 2
 

 
ω Ma1( )=11.900  

 
The downstream Prandtl-Meyer function is then 
 

ω Ma2( )= ω Ma1( )− ∆θ = 11.90 − 100 =1.900  
 

Solving the Prandtl-Meyer function gives the downstream Mach number 
Ma2 =1.13.  The downstream Mach angle is then µ2 = 62.20 .  According to 
the geometry of the above figure, 
 

α 2 = µ2 − ∆θ = 62.20 −100 = 52.20  
 

Since T0 and P0 remain constant, the isentropic flow relations yield 
 

T2 = T1
T01

T1

T2

T02

= T1

1+ k −1
2

Ma1
2

1+ k −1
2

Ma2
2

= 300 1+ 0.2 1.5( )2

1+ 0.2 1.13( )
= 346K  

 

P2 = P1

P01

P1

P2

P02

= P1

1+ k −1
2

Ma1
2

1+ k −1
2

Ma2
2

 

 

 
 
 

 

 

 
 
 

k / k−1( )

= 80 1+0.2 1.5( )2

1+ 0.2 1.13( )
 

 
 

 

 
 

3.5

=132 MPa  

 
Students are encouraged to examine the flow visualization photographs in Ch 9. 
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